Singular perturbation example: ex’+x+1=0
Unperturbed solution: e=0 — x=-—1

Perturbed solution: [e[>0 — 2 roots

One of the root goes to infinity when € — ()

Perturbation 1s singular
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Image positions, and light distribution

No images formed in dark areas

Potential is constrained in the neighborhood of the critical circle only
A familly of models meet such constraint: model degeneracy
Non degenerate representation: perturbative theory ?




New position after small potential
d ))erturbation: large angular shift

dr

» Unperturbed position

Response to a small pertrubation very large...hopeless ?
Actually AO is large but dr is small
(arcs forms near the critical circle)




Nearly round solution

b(r,0)=d,(r)+ew(r,0)

re=€r;

Problem how to derive the response to the perturbation ?
Attempt by Blandford & Kovner (1988): found a perturbative
equation for caustics, but could not derive any equation for
1mages reconstruction (try to make geometrical construction from
caustics) -

Generic problem with prediction of image positions (A0 large)

...something's missing...




The singular perturbative solution

dr

'\ W

> Perfect ring singularity
/ Infinite number of images of a point

The perfect ring situation: a point centered at the center of a cicular lens
An image of the point exists at all § -> considering any perturbed point,
there is always an un-perturbed point at the same ) - Problem of large AO
is solved. Only dr has to be estimated.




Working near perfect ring (r=1) ' — 1 +€ di"

The perturbative response is entirely controled by 2 functions of g, ¢ (6]
and 7.16] the 2 first derivatives of the potential on the unit circle
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Image formation in perturbative theory
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An application to SL2S02176-05131




Perturbative fields reconstruction

Estimate circular source enveloppe
Assume local field linearity
Derive field local slopes

For circular source f 1 1s the mean 1image position




Fourier series best fit (order 3)




Fitting the fields to reproduce HST data

» Chi-Square estimation
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Final solution
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Angle 39/41 — Ellipticity: 0.028/0.2 — 0.09/0.2




Geach etal. 2007 small group (Subaru/XMM-Newton)

Angle 9.9/16 — Ellipticity consistent with velocity dispersion ratio




Perturbative fields reconstruction

Estimate circular source enveloppe
Assume local field linearity
Derive field local slopes

For circular source f 1 1s the mean 1image position




Complete first guess estimation of fields

Fourier series best fit (order 6)
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Fitting the fields to reproduce HST data

Source reconstruction
fold the image to the source plane using the perturbative lens equation

/
/ﬁg/

Ray-trace the source to obtain images, and convolve with HST PSF

» Chi-Square estimation
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Final solution
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- Density reconstruction: nearly 1sothermal background -

~ (Alard 2009) ]
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Inner versus outer contributions
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Inside density shape
Outside density shape



Conclusion: the 3 galaxies share a common outer halo
Obvious sign of merging process
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Color spectrum of the 4 images
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Blue images: part of source inside caustics

0 Red images: part of source outside caustics



Color spectrum of half images
(first 2 1mages)
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Previously: dark matter at the scale of clusters (weak lensing)
Bullet cluster --> difficult for MOND
But the following problems:
Missing baryon mass in clusters (old problem...still there ?7)
Distance of galaxies in the bullet cluster not very well known

New result: probing dark halo's at a new mass scale
dark matter structure at the scale of galaxies
Not much problem with missing baryons
Small group, galaxies all the same...




Statistical information on the shape of the dark halo's
Potential iso-contours: 7. f.(0)
0

fol0)=) o« cos(n0+psi) —» Power spectrum
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Statistical spectral decomposition of the fields

Higher order tails: substructures
df,
do

Order 2 = ellitpticity: most halo's (except mergers)
do not go much beyond order 2
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Near Cusp singularity
Elliptical lens

Perturbator mass= 1%



,Substructure field

>
i Source radius

Image cuts’




Substructures introduce power law tails in the power spectrum
(tend to dominate higher orders)

Amplitude of the power spectrum perturbation identical for the 2 fields

Large slope of the perturbation near the substructure
- strong morphological effects on arcs
- short scale perturbation




Substructures

__ Main halo's

— Total




Finding substructure using the perturbative theory of strong lenses
Will be very much like measuring shear in weak lensing

Know the intrinsic properties of galaxies
Perturbative strong lensing: galaxies power spectrum
Weak lensing: galaxies ellipticities

Estimate residuals
Perturbative strong lensing: Power law tails due to substructures
Weak lensing: Shear

Results:
Perturbative strong lensing: fraction of mass in substructures
Weak lensing: halo mass




Consequences

Comparison of statistical power spectrum to power spectrum
of light distribution: constraints on gravity and dark matter mass

Estimation of substructure mass fraction

If dark substructures: proof of CDM model

If not or weak signal: constraints on the dark matter model
(particle mass, particule type,...warm dark matter ?)
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