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SOLAR DIFFERENTIAL ROTATION 

•  One of the most beautiful astronomical results of the

   last half century was the precision determination

   of the  interior solar rotation.   


  Splitting of p-mode frequencies allows an accurate

  determination of the angular velocity Ω(r, θ), using

  sophisticated inversion techniques applied to the

  excited mode spectrum.  




•  The only place where there is significant differential 
rotation in the sun is in the convective zone (CZ).  


•   This is thought to be the only place where there is a 
significant level of turbulence.  (So much for enhanced 
viscosity models.)  


•  The rotation is approximately constant on cones of 
constant θ at mid latitudes, cylindrical near the equator, 
spherical (apparently) near the poles.


THE FINDINGS: 
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•  The CZ is very nearly adiabatic, P=P(ρ), barotropic. 


•   Convective motions, except near the surface, are small… 
typically 30 m s-1. 


•  A barotropic fluid in hydrostatic equilibrium must rotate on 
cylinders, Ω ( R ).   (Taylor columns.)  The solar rotation 
profile is decidedly not constant on cylinders.


•  But large scale numerical simulations generally do 
produce cylindrical contours, unless forced at boundaries.


THE PROBLEM: 
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•  Despite the simple regularity of the rotation pattern, the 
flow is an extremely complex interplay between convective 
turbulence and rotation.  Some handles exist, however.   


•   Departures from barotropic structure because Coriolis 
forces affect convection.


•  Convection along the axis of rotation is more efficient than 
convection in planes of constant Z.  Hot poles, cool equator.


•  Thermal wind equation:  R ∂Ω2/∂z = eϕ · (∇P ∇ρ)/ ρ2 


THE ORTHODOX VIEW 

Cylindrical: (R, ϕ, z)   spherical:  (r, θ, φ) 




R ∂Ω2/∂z = eϕ · (∇P ∇ρ)/ ρ2 ;    (R, φ, z)   or   (r, θ, φ)


R ρ2 ∂Ω2/∂z = (∂ρ/r∂θ) (∂P/∂r) - (∂ρ/∂r) (∂P/r∂θ) 


Let  S = k/(γ-1)  ln Pρ- γ ,     CP = γk/(γ-1) ,


R ρ CP  ∂Ω2/∂z = (∂P/r∂θ) (∂S/∂r) - (∂P/∂r) (∂S/r∂θ) 


For SCZ:    RCP ∂Ω2/∂z = g (∂S/r∂θ) ,   ρg= - (∂P/∂r).


Shows relationship between large scale latitudinal entropy 
gradients due to Coriolis, and departures from cylindrical 
“isotachs.”     Trend: moving polewards, Ω dec., S inc.


THERMAL WIND EQUATION 



N2 =  | g/γ  ∂ (ln Pρ- γ) /∂r | ≈ 3.8 X 10-13   s-2,


by requiring the solar luminosity to be carried by convection

(Schwarzschild 1958), very rough!


But θ gradient of S is estimated by different TWE physics…


 g/γ  ∂ (ln Pρ- γ) /r∂θ  = R∂Ω2/∂z ≈ 2 X 10-12   s-2,


The θ gradient of S exceeds the r gradient by factor 
of ~ 5…if N2 OK, and thermal wind balance valid.


GETTING THE LAY OF THE LAND 



 ∇S, ∇Ω   COUNTER ALIGNED ? 

Clearly, eθ • ∇Ω   

also much exceeds 

er • ∇Ω .
∇Ω 

er




 ∇S, ∇Ω   COUNTER ALIGNED ? 

Clearly, eθ • ∇Ω   

also much exceeds 

er • ∇Ω .


What if ∇Ω and ∇S are 

more closely related than 

just a  trend?  What if

S=S(Ω2) ?


∇Ω 

er
 ∇S 



TWE would then define the isorotational surfaces.




where S’ is dS/dΩ2.   Solution is Ω2 is constant along

the characteristic 


Since Ω is constant along this characteristic, so is S’.

To solve, set y = sin θ.   Find:


,  a first order linear equation.


Thermal Wind Equation with S=S(Ω2):




With g= GM/r2, the solution is:


where A is an integration constant, and B is


B/r3 ~ order unity or less.


 The basic result is clear: 


     R small,       r=const.

     r >> B/2A,   R=const.  




“Batman contour” is typical.

Spheres at small R, cylinders

at larger R, sharp upturn in

between.




With g= GM/r2, the solution is:


where A is an integration constant, and B is


B/r3 ~ order unity or less.


For solving for Ω, assume a fit at r=r, Ω(cos2θo), 

where θo is θ at r=r, the starting point of the

characteristic
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Miesch, Brun, & Toomre 2006 (imposed latitudinal ∇.)
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 Solution is angular momentum is const. along characteristic 


Solution is similar to angular velocity characteristics.

Find:


Thermal Wind Equation for S=S(L2):
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This is often the way it is in physics---our mistake is not that 
we  take  our theories too  seriously,  but  that we do not take 
them seriously enough. 

                   ---Steven Weinberg, in The First Three Minutes




HOW IS IT THAT S AND Ω CARE ABOUT 
           EACH OTHER SO MUCH? 

To answer this, we need to understand something about

the stability of rotating, stratified, magnetized plasmas.


We need to take rotation, stratification and magnetism seriously.




THE PUNCHLINE: 

Counter alignment of the entropy and angular

velocity gradients is a rigorous condition for

marginal stability in a rotating, convective,

magnetized gas.  




THE PUNCHLINE: 

The solar rotation profile can be understood

as a consequence of maintaining a state of 

marginal (in)stability to the most rapidly growing

axi- and nonaxisymmetric dynamical modes.




THE PUNCHLINE: 

A magnetic field is essential to this picture.  




Fundamental linear response of a magnetized medium:


(Boussinesq; degenerate Alfvén & slow modes.)


Addition of rotation  introduces two new terms,


one of which is “epicyclic,” κ2=dΩ2/dlnR +4Ω2,

the other of which is “tethering,” and gives rise

to  the MRI.
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Compact form of equation:


General wave numbers:


Allow Ω(R, z):




Allow S(R,z) as well:


Most general, baroclinic, axisymmetric response.

Stability from ω→0 limit:




More clear written in terms of displacement vector, ξn


Then,


Marginal modes exist when rotation and entropy surfaces

coincide.   Explicitly (Papaloizou & Szuszkiewicz 1992,

Balbus 1995):


N2 + dΩ2/dln R >0 also required.


+       +                 -         -
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Did we miss something?  What happened to good 

old-fashioned convection?  


BV  oscillations  picked  out  by nonaxisymmetric modes, in 
uniformly rotating medium.  


Without a magnetic field, these purely hydrodynamic modes 
dominate the question of stability.   With even a weak 
magnetic field, the axisymmetric modes become major 
players.




In nonaxisymmetry, local wavenumbers are stretched:


Hence, the wavenumber ratio kR / kZ tends toward


kR(t) = kR(0)−m
∂Ω
∂R

t

kz(t) = kz(0)−m
∂Ω
∂z

t

kR

kz
→ ∂Ω/∂R

∂Ω/∂z

and  . . .




The D operator takes on an interesting form:


DS =
(

kR

kz

∂S

∂z
− ∂S

∂R

)
=

(
∂Ω
∂z

)−1

∇S ×∇Ω

S = lnPρ−γ

In other words, marginalizing D---thus the dynamical

response---corresponds to aligning S and Ω.


DΩ =
(

kR

kz

∂Ω
∂z
− ∂Ω

∂R

)
= 0



Linear growth rate contours.  Solid line is  ΩR / ΩZ .

(Latter 2009).




Nonaxisymmetric 

evolution. 

(Latter 2009) 


Without kvA.      


With kvA. 




SUMMARY & SYNTHESIS 

1. A dominant balance of the vorticity equation 

    corresponding to a thermal wind balance seems

    to hold in much of the SCZ.


2.  ∂S/∂θ > ∂S/∂ ln r , just as seen in Ω contours.


3. TWE equation may be solved exactly with S=S(Ω ).

     Produces isorotation contours in broad agreement with

     helioseismology.  


4. As it happens, S=S(Ω ) corresponds precisely to marginal

    stability of axisymmetric, baroclinic, magnetized modes

    in rotating gas.   Coincidence?




SUMMARY & SYNTHESIS 

5. As it happens, nonaxisymmetric modes evolve toward

kR / kz  = ∂RΩ /∂ZΩ, which neutralizes both DΩ and DS when

S=S(Ω).   Coincidence?   


6. The gross dynamical (“Batman isotachs”) and thermal

   (adiabatic)  features of the SCZ are a consequence of 

    marginalizing the dominant magnetobaroclinic 

    linear unstable modes of the system.  




SUMMARY & SYNTHESIS 

7. Need to resolve (kvA)2 = ∂Ω2 /∂ ln R  wavelengths , nominally

    difficult, not impossible.  Can surely fudge parameters to 

    bring into computational domain.   Calibration with linear

    dispersion relation is  essential.


8. Ideas are generic, simple.    For the future, hope is that

    they will prove to be useful for  problems they were not 

    designed to solve directly, e.g.  latitude dependence of 

    dynamo cycle ⇔ N2(r, θ).  



