Detection and Characterization of Exoplanetary Atmospheres

David K. Sing

Alfred Vidal Madjar Alain Lecavelier des Etangs Jean-Michel Desert Guillaume Hebrard Roger Ferlet Gilda Ballester

INSTITUT D'ASTROPHYSIQUE DE PARIS Unité mixte de recherche 7095 CNRS - Université Pierre et Marie Curie

Overview

 Introduction exoplanet detection techniques • Theory what can we learn from transits? • Results Part 1: HD209458b: HST transit results HD189733b Part 2: Ground-based Secondary eclipse detetion • Conclusions Future ullet

Introduction

5 current planet discovery techniques

• Timing Techniques

• Radial Velocity

• Transits

• Microlensing Events

• Direct Imaging

- 5 current planet discovery techniques
- Timing Techniques
 - Measure accurate pulses/oscillations from the star
 Light travel time of pulse changes with orbit of planet

Wolszczan & Frail 1992

FIG. 3 Period variations of PSR1257+12. Each period measurement is based on observations made on at least two consecutive days. The solid line denotes changes in period predicted by a two-planet model of the 1257+12 system.

• Radial Velocity

- Reflex motion of planet-star system

precise radial velocity measurements of the star

FIG. 4 Orbital motion of 51 Peg corrected from the long-term variation of the γ -velocity. The solid line represents the orbital motion computed

• Transits

By chance, the planet can be viewed passing in front of the star. Photometric light curve shows drop in flux.

FIG. 2.—Shown are the data from Fig. 1 binned into 5 m averages, phased according to our best-fit orbit, plotted as a function of time from T_c . The rms variation at the beginning of the time series is roughly 1.5 mmag, and this precision is maintained throughout the duration of the transit. The increased

- Microlensing events
 - By chance, two stars line up.

- The source star brightening through the gravitational lens of the intervening star.

- A planetary companion (in the right spot) can then further magnify the event. Bond et al. 2004

• Direct Imaging

Chauvin et al. 2004

David Sing: Detection and Characterization of Exoplanetary Atmospheres: IAP Feb 2009

Marois et al. 2008

Transits

- Radius can be determined accurately & robustly along with inclination, Mass (M, R)
- Wavelength dependance of transit signature is sensitive to the atmosphere
- Anti-transit in the infrared can give planetary temperature info (Spitzer), IR emission spectra/photometry.

Anatomy of Transit

Transit light curve depends on

1) Limb-darkening C_1, C_2, C_3, C_4 2) Planet/Star radius contrast R_{pl}/R_{\star} 3) Impact parameter $M_{\star}^{\frac{1}{3}}R_{\star}, M_{pl}, P, i$

Transit is very sensitive to radius ratio R_{pl}/R_{\star} Planet parameters ultimately limited by Star

Translucent Atmosphere

Opaque Planetary Disk

Planet Atmosphere Signature

1-2%

Atmosphere has λ dependance

Jupiter and Ganymede • April 9, 2007

Hubble Space Telescope • WFPC2

Exoplanetary Atmospheres

- Very accurate+fast photometry needed
 - Typical hot-Jupiter signatures (0.02-0.05%) in 1 hour
 - 1 mmag phot. accuracy = 0.1%
- Techniques to high precision (key: relative measurement)
 - Stable pointing/no dithering (reduces flatfield errors)
 - Minimize duty cycle (defocusing to increase exp. time)
 - Characterize systematics from out-of-transit data

Transit Atmosphere Signals

Signal is easier to detect if:

ø Bright

Large contrast (deep transit)

 Large atmosphere (lower surface g, higher Teff)

Transmission Spectra

 For bright targets, HST can produce FULL planetary transmission spectra from the UV-Opt-NIR

Push transit precision to better than 0.01% (S/N 10,000)

HD209458b Hubbard et al. 2001

David Sing: Detection and Characterization of Exoplanetary Atmospheres: IAP Feb 2009

A Few Programs to date:

HD209458b

- T. Brown et al. 2001 high S/N transit "proved" existence of exoplanets
- D. Charboneau et al.2002, Na detection 0.02% in 12 Å band
- Mystery: smaller Na signal than expected (clouds? Na depletion?)

FIG. 3.—Phased light curve for all four transits, assuming a planetary orbital period of 3.52474 days. The time series for each transit has been scaled to have the same average intensity over the second and fifth (out-oftransit) orbits.

A Few Programs to date:

HD209458b

• A. Vidal-Madjar et al. 2003 escaping atmosphere

A Few Programs to date:

HD209458b

 Knutson et al. 2007 used optical HST/STIS low resolution to derive accurate planetary parameters, study limb-darkening

Hot Hydrogen Discovery

Ballester, Sing & Herbet 2007

- Full pixel-by-pixel limb-darkening correction
- Full spectroscopic information

Hot Hydrogen Discovery

STScl press release image Ballester, Sing & Herbet 2007

- Stellar UV heats upper atmosphere (10,000+ Kelvin) resulting in hydrodynamic escape
- Transition region of detectable hot H (H I in 1st exited state n=2), between lower colder H₂ atmosphere and escaping exosphere
- Potential new method of probing escaping hot-Jupiter atmospheres

First Full Exoplanet Optical Transmission Spectrum

HD209458b

- Hot hydrogen discovery used only STIS/G430L grating
- Data from two other gratings available
- Combined all observations into a comprehensive atmospheric transmission spectra

First Full Exoplanet Optical Transmission Spectrum

Red-Noise

• Systematic Errors Prevent co-adding multiple exposures from following $\frac{\sigma}{\sqrt{N_t}}$ relation

 Can reach precisions of 6x10⁻⁵ S/N=16,000

Atmospheric Na in HD209458b

Comprehensive Atmospheric Model $z(\lambda) = H \ln\left(\frac{\xi_{abs}P_{z=0}\sigma(\lambda)}{\tau\mu g}\right)$ $2\pi R_{pl}$

Sing et al. 2008

H

Temp-Pressure profile from Rayleigh + Na

Transit has determined:
1) High Alt. Temp. inversion (thermosphere detection)
2) Global Na abundance
3) Two Na layers
4) Presence of TiO/VO which causes day-side inversion
5) Absolute T-P-z scale with presence of H₂

Sing et al. 2008a,b Desert et al. 2008 Lecavelier de Etangs et al. 2008

Atmosphere of HD209458b

Just the start. More observations needed to distinguish between theories, understand absorption features, rule out systematic errors, g-b & space

Proper identification

- Balmer Jump?
- Rayleigh Scattering?
- Atomic lines?

Solution: 2000-3000 Å HST data Planned after SM4!

Better constrained T-P

- Identify other species (K, Fe, H₂O, ect.)
- Constrain fit chemical equil. & line shape/intensity

"Sunset" of HD209458b Monte Carlo simulation from optical transmission spectra

Atmosphere of HD189733b

Similar transmission spectra can be obtained, results from HST and Nicmos

- New Spitzer results (Desert et al. 2009)
- Atmospheric CO detected

Na - Redfield (2007)

Other canonical hot-Jupiter

HD189733b, Not easy to fit pieces of different observations - Full Optical/NIR Transmission Spectra Needed

Rayleigh scattering MgSiO₃ - Lecavelier et al. (2008)

Haze - Pont et al. (2008)

- Haze, Na, and Rayleigh scattering are difficult to put together (problem with theory or observations?)
- <u>Solution</u>: HST cycle 17, multiple STIS/Nicmos programs will address these issues
 - Sing Na/STIS
 - Lecavelier Escaping atmosphere
 - Pont STIS/Nicmos Full Optical transmission spectra

David Sing: Detection and Characterization of Exoplanetary Atmospheres: IAP Feb 2009

Ground Secondary Eclipse

- Revolution with Spitzer anti-transit measurements (Deming 05; Charbonneau 05; Knutson 07, ect.)
- Past ground-based attempts

 (Knutson 07; Deming 07; Snellen 05; Snellen & Corvino 07, ect.)
 Near-IR, difficult to do precision photometry
- Lopez-Morales & Seager (2007)
 - Significant optical flux for very-hot Jupiters Teff ~
 2500 3000 K
 - Precision optical photometry easier than in near-IR

Prediction

 Lopez-Morales & Seager (2007); z' band
 Thermal Emission or Reflected light f = re-radiation factor AB = Bond albedo

$$T_{p} = T_{*} \left(\frac{R_{*}}{a}\right)^{1/2} [f(1 - A_{\rm B})]^{1/2}$$
$$F_{p_{\rm th}} = \frac{2h\nu^{3}}{c^{2}} \frac{\pi R_{p}^{2}}{e^{h\nu/k}T_{p}} \frac{1}{D^{2}}$$

$$F_{p_{\rm ref}} = F_* \frac{2}{3} A_{\rm B} \frac{R_p^2}{a^2}$$

$$\Delta \text{mag} \mid = 2.5 \log \left(1 + \frac{F_p}{F_*} \right)$$

Prediction

• Lopez-Morales & Seager (2007)

Effective Temperatures of the 11 Known Transiting VHJs, for $A_{\rm B} = 0.0$				
Planet	$f = \frac{T_p(K)}{\frac{2}{3}}; A_{\rm B} = 0$	$T_p(K)$ $f = \frac{2}{3}; A_{\rm B} = 0.3$	$T_p(K)$ $f = \frac{2}{3}; A_{\rm B} = 0.5$	$f = \frac{T_p(K)}{\frac{1}{4}}; A_{\rm B} = 0$
OGLE-TR-56b	2889 ± 24	2642 ± 22	2429 ± 20	2260 ± 19
OGLE-TR-113b OGLE-TR-132b	1717 ± 14 2615 ± 36	1570 ± 13 2392 ± 32	$1444 \pm 12 \\ 2199 \pm 30$	$1344 \pm 11 \\ 2046 \pm 28$
HD189733b	1500 ± 10	1372 ± 9	1261 ± 8	1174 ± 8
XO-2b Corot-exo-1b	$\begin{array}{r} 1682 \pm 15 \\ 2225 \end{array}$	1539 ± 14 2036	$ \begin{array}{r} 1415 \pm 13 \\ 1871 \end{array} $	$1316 \pm 12 \\ 1742$
WASP-1	2177 ± 61	1991 ± 56	1831 ± 51	1704 ± 48
WASP-2 HD140926b	1615 ± 96 2226 ± 30	1478 ± 87 2036 ± 27	$1358 \pm 80 \\ 1872 \pm 25$	1264 ± 75 1742 ± 23
TrES-2	$1882~\pm~15$	1722 ± 14	1583 ± 13	1473 ± 12
TrES-3	2100 ± 32	1921 ± 29	1766 ± 27	1643 ± 25

David Sing: Detection and Characterization of Exoplanetary Atmospheres: IAP Feb 2009

TABLE 1

Prediction

• Lopez-Morales & Seager (2007)

Observations

Challenges for Ogle-Tr-56

1) Faint (V=16.56); harder to reach necessary precision; $0.01\% \Rightarrow 10^8$ photons/1 hour

2) Small signal; secondary eclipse depth of < 0.05%

3) Crowded Field toward galactic center

Observations

Observations

VLT 8.2 m

Magellan 6.5m

July 2, 2008 FORS2 camera August 3, 2008 MagIC-E2V frame transfer

Z band

- ~1 mmag/min
- Red-noise estimated with "prayer-bead" method

 $\frac{\text{VLT}}{\sigma_{red} = 1.1 \times 10^{-4}}$

Magellan $\sigma_{red} = 4 \times 10^{-5}$

VLT Eclipse Depth = $0.037\% \pm 0.016\%$ $\chi^2_V = 0.90$ Magellan Eclipse Depth = $0.036\% \pm 0.011\%$ $\chi^2_V = 0.93$

Total Eclipse Depth = $0.0363\% \pm 0.0091\%$

Black Body

- $T_{eff} = 2718 \pm 117 \text{ K}$
- Low albedo
- Instant re-radiation
 f > 0.47

Non-black body Models

• Can not distinguish between models with and without TiO (upper atmo. Temp inversion)

Ogle-Tr-56

- Ground-based secondary eclipse detected for Ogle-Tr-56
- Do not have precision to distinguish between models blackbody, with/wo TiO
- Other optical wavelengths and/or near-IR needed
- Other very-hot Jupiters can be detected in z'
- Allow the science to continue after Spitzer

Press release image Sing 2009

The Next Generation Transit Follow-up Project: Exoplanet Characterization and Detection Through Fast Photometry & Spectroscopy

GTC OSIRIS

- 1) 10.4 Meter Segmented Primary Mirror based on Keck design
- 2) Has adaptive optics shaping the primary mirror
- 3) First light July 13, 2007
- 4) Science Observations start April 2009
- 5) Currently the "Largest Telescope in the World"

ESO granted time as part of Spain entry into ESO 122 total nights from (2009-2011) distributed in 40 clear nights/year ~6 total ESO projects granted over 4 proposal calls

Granted a total of 180 hours, service mode, 36 transits at 5h/event, 5.4% of total 1st year GTC time (Sing PI)

GTC gives full range of hot-Jupiters

GTC Transit Project

• Science Objectives:

• Scrutinize the atmospheric composition of transiting planets with narrowband fast-photometry at multiple wavelengths (Na, K, TiO?, Rayleigh?)

• Enable wide scale comparative exoplanetology, 6-7 hot-Jupiters

• Detect other planets (sensitive to earth-mass planets with timing variations).

Conclusions

Transits are the keystone to a strong foundation of comparative exoplanetology
Ground-based programs will greatly enhance hot-Jupiter detections
GTC- comprehensive hot-Jupiter atmospheric surveys