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Background: Sakharov(1968), Damour(1979), Thorne(1986),
Jacobson(1995), Bei-Lok Hu(1996), Volovik(2003), Visser(2005),
Rong-Gen Cai(2009), ....

I will describe (mostly) the work by me and my collaborators.
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THERMODYNAMICS

SPACETIME 

GRAVITY IS AN EMERGENT

PHENOMENON

GRAVITY IS THE THERMODYNAMIC LIMIT OF THE
STATISTICAL MECHANICS OF ‘ATOMS OF SPACETIME’
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ENTROPY DENSITY OF SPACETIME

AN ALTERNATIVE PARADIGM
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NO ELEGANT PRINCIPLE!

RESIDUE FROM HISTORY: Treat gravity as a field
even if it is spacetime structure.

NO STANDARD ACTION PRINCIPLE [L ∝ (∂g)2]
IS AVAILABLE.

TOTALLY UNLIKE ALL OTHER REAL FIELDS!

Let us proceed, regardless ......
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FIELD EQUATIONS BECOME:

R
b
a −

1

2
Lδ b

a =
1

2
T b
a ; R

b
a ≡ Pde

ac R
bc
de .

REDUCES TO EINSTEIN’S EQUATIONS IN D = 4; NATURAL
GENERALISATION FOR D > 4
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VARIATIONAL PRINCIPLE REQUIRES SPECIAL PROVISIONS
UNLIKE OTHER FIELD THEORIES.

ACTION HAS SURFACE AND BULK TERMS

L≃ ∂ (P∂g)+P(∂g)2 = Lsur +Lbulk

BULK TERM (e.g., Γ2 in GR) ALONE CAN GIVE FIELD
EQUATIONS.

IN GR ACTION REDUCES TO A PURE SURFACE TERM IN
LOCAL INERTIAL FRAME.

MYSTERIOUS (‘HOLOGRAPHIC’) DUPLICATION OF
INFORMATION:

√−gLsur =−∂a
(

gij
δ
√−gLbulk

δ (∂agij )

)
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Most importantly, all these theories must be wrong!

SINGULARITIES IN SIMPLE SOLUTIONS LEAD TO LACK OF
PREDICTABILITY.

QUANTUM DESCRIPTION IS (POSSIBLY) CALLED FOR.

NO VIABLE MODEL OF QUANTUM GRAVITY IS IN SIGHT!

THIS MOTIVATES US TO STUDY POINTS OF CONTACT AND
CONFLICT BETWEEN QUANTUM THEORY AND GRAVITY.

Single most important result from such a study is .....
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WHY ARE HORIZONS HOT ?

PERIODICITY IN

IMAGINARY TIME

}

⇐⇒
{

FINITE TEMPERATURE

exp(−i t H) ⇐⇒ exp(−β H)

SPACETIMES WITH HORIZONS EXHIBIT PERIODICITY IN

IMAGINARY TIME =⇒ TEMPERATURE
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TE = iT

τE = iτ

τE =
con

st

X

TE

r = const

0≤ τE <
2π
g

ds2 = dTE
2+dX 2 = g 2r 2dτE 2+dr 2

gτE

X = r cosgτE
TE = r singτE



X = r cosθ
Y = r sinθ

θ = con
st

X

Y

θ

r = const

0≤ θ < 2π

ds2 = dY 2+dX 2 = r 2dθ 2+dr 2
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Vacuum fluctuations Thermal fluctuations⇐⇒
ds

2 ≈−c
2
dT

2+dX
2 =⇒ ds

2 ≈−
(

1+
4πc(kBT )

h̄
x

)

c
2
dt

2+

(

1+
4πc(kBT )

h̄
x

)−1

dx
2
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OBSERVERS WHO PERCEIVE A HORIZON
ATTRIBUTE A TEMPERATURE TO SPACETIME

kBT =
h̄

c

( g

2π

)

This temperature — when a null surface acts as a horizon — is
independent of the field equations.

Shows spacetimes — like matter — can be hot in an observer
dependent manner. This effect is ‘real’.

The corresponding entropy S =−Tr ρ lnρ is divergent (and
scales as area). QFT in CST can give temperature but not
entropy!
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Local Rinder
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ALL THERMODYNAMICS IS
OBSERVER-DEPENDENT

VACUUM TEMPERATURE IS OBSERVER DEPENDENT; GLASS
OF WATER IS EXCITED STATE OF THE VACUUM; QED!

DEGREES OF FREEDOM CONTRIBUTING TO ENTROPY IS
OBSERVER DEPENDENT.

“ WHAT ARE THE DOF CONTRIBUTING TO BH ENTROPY?”
HAS NO OBSERVER INDEPENDENT ANSWER!

HORIZON ‘UPGRADES’ GAUGE DOF TO ‘TRUE’ DOF FOR A
PARTICULAR OBSERVER [Majhi, TP, arXiv:1204.1422]

SIMPLEST EXAMPLE OF THESE EFFECTS: BOX OF GAS IN
FLAT SPACETIME! [Kolekar, TP, arXiv:1012.5421]
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Invariance under xa → xa+qa(x) leads to an off-shell
conserved current Ja in these theories.

Ja[qi ]≡ ∇bJ
ab = 2Ra

bq
b+ v a[qi ] = ∇b[2P

abcd∇cqd ]

The (Wald) entropy of the horizon in any theory is given by

S = β
∫

dD−2Σab J
ab =

1

4

∫

H

(32πPab
cd )εabεdcdσ

Entropy knows about spacetime dynamics through Pab
cd
;

temperature does not.

The connection between xa → xa+qa(x) and entropy is a
mystery in the conventional approach.
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...another mystery in conventional approach! ...

The natural action principle in all Lanczos-Lovelock models have a
surface and bulk term:

Agrav =

∫

V

dDx
[√−gLbulk +∂i(

√−gV i)
]

= Abulk +

∫

∂V

dD−1x
√
hniV

i

Throw away (or cancel) surface term, vary the bulk term to get field
equations. The discarded the Asur, evaluated on any horizon gives its
entropy !

How does the surface term know the physics determined by the bulk

term?!
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SURFACE TERM IN GRAVITATIONAL ACTION-II
More Physics of the Surface Term

[T.P, 2004; A. Mukhopadhyay, T.P, 2006; S.Kolekar, T.P, 2010]

In stationary spacetimes with horizon in any LL model,
◮ Euclidean action is the free energy:

AE = βE
︸︷︷︸

bulk term

− S
︸︷︷︸

surface term

= βF

◮ Noether current is closely related to the surface term:

L
√−g =−2G 0

0 + ∂α
(√−gJ0α)

◮ Holographic relation is again preserved.

One can obtain LL field equations from a suitable variation of the
surface term [Sotiriou, Liberati, 06; TP, 06; 11]
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gas made of molecules

piston

piston in a 
displaced location

Horizon in a 
displaced location 

Black hole

OR IZ ONH

c
4

G

[
κa
c2

− 1

2

]

= 4πPa2 ⇒ h̄

c

( κ
2π

)

︸ ︷︷ ︸

kBT

c
3

Gh̄
d

(
1

4
4πa2

)

︸ ︷︷ ︸

k
−1
B

dS

− 1

2

c
4
da

G
︸ ︷︷ ︸

−dE

= Pd

(
4π
3
a
3

)

︸ ︷︷ ︸

P dV



HOLDS TRUE FOR A LARGE CLASS OF MODELS!

Stationary axisymmetric horizons and evolving spherically symmetric horizons in
Einstein gravity, [gr-qc/0701002]

Static spherically symmetric horizons in Lanczos-Lovelock gravity,
[hep-th/0607240]

Dynamical apparent horizons in Lanczos-Lovelock gravity, [arXiv:0810.2610]

Generic, static horizon in Lanczos-Lovelock gravity [arXiv:0904.0215]

Three dimensional BTZ black hole horizons [arXiv:0911.2556];[hep-th/0702029]

FRW and other solutions in various gravity theories [hep-th/0501055];
[arXiv:0807.1232]; [hep-th/0609128]; [hep-th/0612144]; [hep-th/0701198];
[hep-th/0701261]; [arXiv:0712.2142]; [hep-th/0703253]; [hep-th/0602156];
[gr-qc/0612089]; [arXiv:0704.0793]; [arXiv:0710.5394]; [arXiv:0711.1209];
[arXiv:0801.2688]; [arXiv:0805.1162]; [arXiv:0808.0169]; [arXiv:0809.1554];
[gr-qc/0611071]

Horava-Lifshitz gravity [arXiv:0910.2307] .
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Stationary axisymmetric horizons and evolving spherically symmetric horizons in
Einstein gravity, [gr-qc/0701002]

Static spherically symmetric horizons in Lanczos-Lovelock gravity,
[hep-th/0607240]

Dynamical apparent horizons in Lanczos-Lovelock gravity, [arXiv:0810.2610]

Generic, static horizon in Lanczos-Lovelock gravity [arXiv:0904.0215]

Three dimensional BTZ black hole horizons [arXiv:0911.2556];[hep-th/0702029]

FRW and other solutions in various gravity theories [hep-th/0501055];
[arXiv:0807.1232]; [hep-th/0609128]; [hep-th/0612144]; [hep-th/0701198];
[hep-th/0701261]; [arXiv:0712.2142]; [hep-th/0703253]; [hep-th/0602156];
[gr-qc/0612089]; [arXiv:0704.0793]; [arXiv:0710.5394]; [arXiv:0711.1209];
[arXiv:0801.2688]; [arXiv:0805.1162]; [arXiv:0808.0169]; [arXiv:0809.1554];
[gr-qc/0611071]

Horava-Lifshitz gravity [arXiv:0910.2307] .

IN ALL THESE CASES FIELD EQUATIONS REDUCE
TO TdS = dE +PdV ON THE HORIZON!
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KEY ROLE OF NULL SURFACES – II
The Navier-Stokes Einstein connection

[Damour, 1979; Price and Thorne, 1986; Eling, Liberati,2010;....., TP, 2010]

A BH horizon can be thought of as a dissipative membrane with
conductivity (σ), bulk viscosity (ζ ), shear viscosity (η). In
particular, (Damour, 1979)

η =−ζ =
1

16π
;

η
s
=

1

4π

The projection of Einstein’s equation on to any null surface
reduces to Navier-Stokes equation in the FFF in suitable
variables. (TP, 1012.0119)

Strongly suggestive of emergent behaviour.

Related to, but different from, string-motivated results.
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GRAVITY IS THE THERMODYNAMIC LIMIT OF

THE STATISTICAL MECHANICS OF

MICROSCOPIC SPACETIME DEGREES OF FREEDOM
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BOLTZMANN: IF YOU CAN HEAT IT, IT HAS
MICROSTRUCTURE!

You Can Heat Up Gas

Thermodynamics can be related to mechanics of microstructure e.g.
(3/2)kBT = (1/2)m〈v2〉.

The density of ∆n of d.o.f, needed to store energy ∆E at
temperature T is given by ∆n =∆E/(1/2)kBT .

The equipartition law

E =
1

2
nkBT →

∫

dV
dn

dV

1

2
kBT =

1

2
kB

∫

dnT

demands the ‘granularity’ with finite n; degrees of
freedom scales as volume.
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BOLTZMANN: IF YOU CAN HEAT IT, IT HAS
MICROSTRUCTURE!

You Can Heat Up the Spacetime

Study spacetime just like we studied gas dynamics before we
understood the atomic structure of matter.

A TEST OF THIS IDEA: DETERMINE THE AVOGADRO
NUMBER OF SPACETIME!

IS THERE AN EQUIPARTITION LAW

∆E = (1/2)(∆n) (kBT )

FOR THE DENSITY OF MICROSCOPIC

SPACETIME DEGREES OF FREEDOM ?

IF SO, CAN WE DETERMINE ∆n?
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TP, CQG, 21, 4485 (2004); MPLA, 25, 1129 (2010)[0912.3165]; PRD, 81, 124040 (2010)[1003.5665]

In any Lanczos-Lovelock model, field equations lead to an
equipartition law:

E =
1

2
kB

∫

∂V

dnTloc ;
dn

dA
= 32πPab

cd εabεcd

‘Gravity is holographic’ !:

E ≡ 1

2
kB

∫

∂V

dnTloc ≡
1

2
kB

∫

∂V

dA
dn

dA
Tloc

In GR, this reduces to:

E =
1

2
kB

∫

∂V

dA

L2P
︸︷︷︸

Area ‘bits′

{
h̄

kBc

g

2π

}

︸ ︷︷ ︸

acceleration
temperature

≡ 1

2
kB

∫

∂V

dnTloc
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A NEWTONIAN ANALOGY
TP, CQG, 21, 4485 (2004); MPLA, 25, 1129 (2010)[0912.3165]; PRD, 81, 124040 (2010)[1003.5665]

=

∫

∂V

dA

(Gh̄/c3)

(
1

2
kBT

)
g

=
c2

4πG

∫

∂V

dA (−n̂ ·g) =
∫

∂V

dA

(Gh̄/c3)

1

2

(
h̄

c

g

2π

)

Equipotential
surface

E =M c2 = c2
∫

V

ρ dV =− c2

4πG

∫

V

dV (∇ ·g)
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ρUV ρIR ∼ H2

Λ
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At present ρeff (t0)≈ ρDE (t0)! Explanation for DE ?! [Sorkin,97;TP,05]

◮ If ρDE = const, we need to explain LIR/LUV ≈ exp(
√
2π4).

◮ “Holographic Dark Energy”: ρDE (t) ∝ L−2
IR (t)/G has serious

problems. [Campo...,1103.3441]

In static spacetimes GR gives an exact equation: [TP,1003.5665]

Dαa
α = 4π[ρKomar +ρT ]; ρT =− a2

4π
=−πT 2

loc

Holographic graviton noise ? [Hogan, 08]



System Macroscopic body Spacetime

Can the system be hot? Yes Yes

Can it transfer heat? Yes; for e.g., hot gas can be Yes; water at rest in Rindler

used to heat up water spacetime will get heated up

How could the heat energy be The body must have microscopic Spacetime must have microscopic

stored in the system? degrees of freedom degrees of freedom

Number of degrees of freedom Equipartition law Equipartition law

required to store energy dE dn= dE/(1/2)kBT dn= dE/(1/2)kBT

at temperature T

Can we read off dn? Yes; when thermal equilibrium Yes; when static field eqns hold;

holds; depends on the body depends on the theory of gravity

Expression for entropy ∆S ∝ ∆n ∆S ∝ ∆n

Does this entropy match Yes Yes

with the expressions

obtained by other methods?

How does one close the Use an extremum principle Use an extremum principle

loop on dynamics? for a thermodynamical for a thermodynamical

potential (S,F , ...) potential (S,F , ...)



PART II

THERMODYNAMIC EXTREMUM PRINCIPLE
−→ FIELD EQUATIONS

Use a thermodynamical potential ℑ[qA] for
spacetime extremising which for all class of
observers should give the field equations.
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Thermodynamic potentials like ℑ = (S [qA],F [qA], ...)
connect the fundamental and emergent descriptions

in terms of some suitable variables.

The nature of independent variables qA and the form
of ℑ[qA] depend on the class of observers and the

model for gravity. New level of observer dependence.

We need a thermodynamical potential ℑ[qA] for
spacetime extremising which for all class of observers
should give the field equations.
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ASSOCIATE THERMODYNAMIC POTENTIALS
WITH NULL VECTORS



DEFORMING A SOLID

x

y

z

x
q

x
x̄



DEFORMING A SOLID

x

y

z

x
q

x
x̄

x→ x+q(x)



DEFORMING A SOLID

x

y

z

x
q

x
x̄

x→ x+q(x)

ℑ ∼ A(∇q)2+Bq2
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DEFORMING A NULL SURFACE

space

time

εℓi

NU
LL
SU
RF
AC
E

x i → x̄ i = x i + εℓi

ℑ ∼ A(∇ℓ)2+Bℓ2
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A NEW VARIATIONAL PRINCIPLE

Associate with the virtual displacements of null vectors ξ a a
potential ℑ(ξ a) which is quadratic in deformation field:

ℑ[ξ ]∼ [A(∇ξ )2+Bξ 2] =−
[

4Pabcd∇cξa∇dξb−T abξaξb
]

Demand that δℑ/δξ a = 0 for all null vectors ξ a should lead to
second order field equations. [T.P, 08; T.P., A.Paranjape, 07]

Uniquely fixes Pab
cd as to be the entropy tensor of a Lanczos-Lovelock

Lagrangian with ∇aP
ab
cd = 0;∇aT

ab = 0 (‘elastic constants’ !).

Resulting equations are the field equations of Lanczos-Lovelock
theory with an arbitrary cosmological constant arising as integration
constant.
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THE DYNAMICAL EQUATIONS

On-shell ℑ gives Wald entropy. Non-trivial

consistency.

To the lowest order/in D = 4 we get GR. Equivalent
to

(Gab−8πTab)ℓ
aℓb = 0; (for all null ℓa)

A new symmetry: Action and field equations are

invariant under Tab → Tab+ρ0gab. Gravity does not
couple to bulk vacuum energy.
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Emergent paradigm provides better insight into ...

Why does the current related to xa → xa+qa(x) have anything to
do with a thermodynamical variable like entropy ?

Why do Einstein’s equations reduce to a thermodynamic identity on
the horizons ? And, as Navier-Stokes equations on null surfaces?

Why does Einstein-Hilbert action have several peculiar features ?
(holographic surface/bulk terms, thermodynamic interpretation ....)

Why does the surface term in the action give the horizon entropy ?
And on-shell action reduces to the free energy ?

Why does the microscopic degrees of freedom obey thermodynamic
equipartition ?

Why does a thermodynamic variational principle lead to the
gravitational field equations?

Why do all these work for a wide class of theories?
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SUMMARY - II

There is sufficient ‘internal evidence’ to conclude dynamics of
gravity is like fluid mechanics, elasticity ....

The deep connection between gravity and thermodynamics
goes well beyond Einstein’s theory.

Deformations of ‘spacetime medium’ x i → x i +qi (x), applied to
null surfaces, affects accessibility of information. Extremisation
of relevant thermodynamic potential ℑ[q] gives field equations.

Null surfaces/vectors provides an effective, collective,
description of microscopic physics at large scales.

Gravity is ‘holographic’ in many ways.
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CHALLENGES FOR FUTURE

What precisely is emergent ? space, time, metric, eom .... ?
What is the pregeometric structure ?

Matter sector is now put in by hand. If gravity and/or
spacetime is emergent, matter must emerge with it. How?

New level of observer dependence in thermodynamics variables
like temperature, entropy etc. “Real” VS “acceleration”
temperature. What are the broader implications ?

Produce a falsifiable prediction. We need to do better than
other QG candidate models!
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