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Outline

• Galaxy clustering: peaks and biasing

• Redshift space distortions: measuring the growth rate

• Halo velocity bias: time evolution

• Tests with N-body simulations
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Cosmology with redshift surveys

Weak gravitational lensing
galaxy shapes

Galaxy clustering
galaxy positions
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Statistical tools

The most common statistics is the 2-point correlation or power spectrum:

= number of galaxy pairs in excess of random
separated by a distance r

⇠gg(r)

Pgg(k) = power in fluctuations of wavenumber k
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Scales

keq
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keq

Baryon Acoustic Oscillation (BAO)

ks ⇠ 1/rs

Characteristic scales
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keq

Baryon Acoustic Oscillation (BAO)

ks ⇠ 1/rs

Characteristic scales

Warm Dark Matter

kFS ⇠ mWDM
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keq

Baryon Acoustic Oscillation (BAO)

ks ⇠ 1/rs

Characteristic scales

Warm Dark Matter

kFS ⇠ mWDM

Inflationary non-Gaussianity

kNG ⇠ fNLH
H = aH = ȧ
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Simulations + analytics
4

it only contributes to the monopole δ00(k) in Eq. (16), and the
monopole vanishes by definition at k = 0. Without loss of
generality, we can express n̄g(z) as

n̄g(z) ≡ ñg W(z) ≡
(

Ntot

Vs

)

W(z) , (19)

where the surveyed volume is

Vs = 4π

∫ ∞

0
dr r2W = 4π

∫ ∞

0
dz

r2

H
W , (20)

and Ntot is the total number of galaxies measured in the sur-
vey. Equation (19) defines the survey window function W ,
also known as radial selection function. It is related to the
redshift distribution as

Pz(z) =
r2

H
Pr(r) =

4π

Vs

r2

H
W(z) =

4π

Ntot

r2

H
n̄g(z) , (21)

where H(z) is the Hubble parameter and the normalization
convention is 1 =

∫

dz Pz(z) =
∫

dr r2 Pr(r). In principle,
W(z) could be generalized to include an angular selection
function. In what follows however, we will consider galaxy
surveys with full-sky coverage and uniform angular selection
function for simplicity. The galaxy number density at position
x thus is

ng(x) = ñgW(z) [1 + δg(z, x̂)] , (22)

and its two-point correlation function reads

〈ng(x1)ng(x2)〉 = ñ2
gW(z1)W(z2)

[

1 + ξg(x2 − x1)
]

+ñgW(z1)δ
D(x2 − x1) , (23)

where ξg(x2 − x1) is the Fourier transform of the noise-free
galaxy power spectrum. We have assumed that the galaxies
are an (inhomogeneous) Poisson sampling of 1+ δg(x) to de-
rive the shot-noise term [? ].

Before we proceed further, we introduce the transfer func-
tions TX(k, z) of random perturbation variables X that fur-
ther simplify the spherical Fourier decomposition by separat-
ing radial (time) dependence from angular dependence. For
the galaxy fluctuation, we have

δg(k, z) = Tg(k, z) ϕv(k) + ε(k, z) , (24)

where the power spectrum of the comoving curvature
∆2

ϕv
(k) = k3Pϕv

(k)/2π2 at initial epoch is a nearly scale-
invariant and the transfer function is independent of angle.
The comoving curvature ϕv(k) is often denoted as ζ(k) in
literature. Arising from the discrete distribution, ε(k, z) is
a residual Poisson noise that is uncorrelated with δg(k, z),
with power spectrum 〈ε(k, z)ε(k′, z)〉 = (2π)3δD(k −
k′)/(ñgW(z)).

In case that time evolution is related to radial coordinates, it
is more natural to use Eq. (16) than Eq. (13), and so is it to use
Eq. (17) than Eq. (14) for computing spherical Fourier modes
and their spherical power spectrum, respectively. On inserting
Eq. (22) into Eq. (16) and substituting the transfer function Tg

and survey selection function W , the spherical Fourier mode
simplifies to

δlm(k) = il
∫

d ln k′k′3

2π2

∫

d2k̂′ ϕv(k
′) Y ∗

lm(k̂′) Ml(k
′, k)

+ εlm(k) , (25)

where εlm(k) is the spherical Fourier transform of the residual
noise field ñgW(z)ε(x), and the spherical multipole function
Ml(k′, k) is defined as

Ml(k̃, k) ≡ k

√

2

π

∫ ∞

0
dr r2 W(r) jl(k̃r) jl(kr) Tg(k̃, r) ,

(26)
where its dimension is [Ml(k̃, k)] = L2. After some simpli-
fication, the spherical power spectrum in Eq. (17) eventually
reads

Sl(k, k
′) = 4πñ2

g

∫

d ln k̃ ∆2
ϕv
(k̃)Ml(k̃, k)Ml(k̃, k

′)

+
2kk′

π
ñg

∫ ∞

0
dr r2W(r)jl(kr)jl(k

′r) .(27)

The second-term in the right-hand side is the shot-noise con-
tribution. Using the Limber approximation (see Sec. III C),
the shot-noise power spectrum can be rewritten as

Nl(k, k
′) ≡ 2kk′

π
ñg

∫ ∞

0
dr r2W(r)jl(kr)jl(k

′r)

≈ ñgW(ν/k)δD(k − k′) , (28)

where ν = l + 1/2. For a homogeneous and isotropic galaxy
population with constant comoving number density n̄g = ñg

and power spectrum 〈δg(k)δ∗g(k′)〉 = (2π)3δD(k−k′)Pg(k),
the spherical power spectrum Eq. (27) yields the well-known
relation

Sl(k) = n̄2
gPg(k) + n̄g . (29)

The angular multipole l controls the transverse wavenumber
k⊥ but, since the amplitude of the wavevector k = |k| is al-
ready set in Sl(k), the spherical power spectrum must be in-
dependent of l. In practice, however, W(r) is always different
than unity so that Sl(k, k) is never independent of the multi-
pole l. Note also that, with the galaxy number density defined
as Eq. (22), both the spherical power spectra Sl and Nl have
dimensions of L−2. We will henceforth assume that Vs is ac-
curately known and work with the normalized galaxy number
density ng(x)/ñg , instead of ng(x). In this case, the spheri-
cal power spectrum is given by the right-hand side of Eq. (27)
divided by ñ2

g .
Before we close this section and apply the spherical Fourier

analysis to the general relativistic description of galaxy clus-
tering, we discuss our assumption for survey geometry and
other approaches to handling the survey window function.
Our spherical Fourier decomposition assumes that the full sky
is available for measuring the galaxy number density field
ng(x). For surveys with an incomplete sky coverage, an-
gular multipoles with characteristic scale larger than the sky

Fig. courtesy Ilian Iliev
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Spherical collapse

ti (z ⇠ 1000)

|�i| ⇠ 10�3

ti

�i = 0

�i > 0

�i < 0

(Gunn & Gott ’72)

Linear density @ collapse:

Nonlinear density @ collapse:

� = 1.68 ⌘ �c

� ⇠ 200
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The halo model: origin

(White & Rees ’78)

(Binney ’77;  Silk ’77; Rees & Ostriker ’77; White & Rees ’78; ...) 
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The halo model: clustering

⇠gg(r) = ⇠
1halo

(r) + ⇠
2halo

(r)

(Ma & Fry ’00; Seljak ’00; Peacock & Smith ’01; ...)
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The halo model: clustering

⇠gg(r) = ⇠
1halo

(r) + ⇠
2halo

(r)

(Ma & Fry ’00; Seljak ’00; Peacock & Smith ’01; ...)

r . 1h�1Mpc

k & 1hMpc�1

same halo profile
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The halo model: clustering

⇠gg(r) = ⇠
1halo

(r) + ⇠
2halo

(r)

(Ma & Fry ’00; Seljak ’00; Peacock & Smith ’01; ...)

r & 1h�1Mpc

k . 1hMpc�1

distinct halo centres

same halo profile

r . 1h�1Mpc

k & 1hMpc�1
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Biasing

(Bahcall & Soneira ’83)

⇠ 100 clusters of galaxies with z . 0.1
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Biasing

�c = 1.68

(Kaiser ’84)

�(x)

DM halos trace linear densities above critical threshold for collapse 

position x
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Biasing

�c = 1.68

⇠gg(r) = b21 ⇠(r) + ...

(Kaiser ’84)

�g(x) = b1�(x) + ...

�(x)

DM halos trace linear densities above critical threshold for collapse 

b1 ⇠ ⌫

�
=

�c
�2

position x
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Biasing

�c = 1.68

(Kaiser ’84; Szalay ’88’ Fry & Gaztanaga 93; ...)

�(x)

Local bias model: �g(x) = b1�(x) +
1

2
b2�

2(x) + ...

⇠gg(r) = b21 ⇠(r) +
1

2
b22 ⇠

2(r) + ...

DM halos trace linear densities above critical threshold for collapse 

bN ⇠
⇣⌫
�

⌘N

position x
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�c = 1.68

The peak model

(Bardeen et al. ’86 = BBKS)

Consider initial density maxima. Countable set, like DM halos
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0

Peak number density

npk(x) =
X

p

�D
�
x� xp

�
=?

Answer in Kac ’43; Rice ’51; BBKS
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Connection initial peaks - halos

(Ludlow & Porciani ’11)

. 10%

& 90%
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The halo mass function

(Biagetti, Chan; VD & Paranjape ’14)

(Robertson et al. 2009)

3 ingredients in addition to BBKS:

• Collapse barrier depends on halo mass

• Collapse barrier is stochastic

• First-crossing (no peaks in peaks)

(Paranjape, Sheth & VD ’13)

B(�) = �c + ��
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Linear peak bias

• Gaussian initial conditions: density correlate with the curvature

(VD ’08;  VD, Gong & Riotto ’13)

• The linear bias of initial density peaks is

�s(x), r2�s(x)

P
�
�s(x)

��r2�s(x)
�
6= P

�
�s(x)

�

�pk(k) = c1(k)�(k)

c1(k) =

✓
b100 + b010k

2 � b001
@ lnW

@Rs

◆
W (kRs)

⇡
⇣
b10 + b01k

2
⌘
W (kRs)
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Effect on the BAO

(VD ’08)
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Effect on the BAO

(VD ’08)
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(VD, Crocce, Scoccimarro & Sheth ’10)
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Effect on the BAO

(VD ’08)
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e
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s

(VD, Crocce, Scoccimarro & Sheth ’10)

Galaxy formation on the largest scales 11

Figure 11. Scale dependence of the bias for galaxy samples selected according to stellar mass (top row) and to star formation rate
(middle row), as well as for a mass-selected halo sample (bottom row). Coloured lines show results for samples at five different number
densities, as indicated by the legend, matching the samples shown Fig.10. Vertical dashed lines denote the position of the BAO peak in the
correlation function of dark matter. Deviations from zero imply deviations from linear biasing of the nonlinear dark matter distribution.
The error bars are given by the square root of the diagonal elements of the covariance matrix for each measurement.

Figure 12. Same as Fig. 11 but for the monopole of the redshift-space correlation function.

covariance matrix, which we compute analytically following
Smith (2009), including the effects of finite volume and fi-
nite tracer number. For comparison, we also overplot the
difference between the linear and nonlinear DM 2pCF.

We highlight two facts that allow us to explore our re-
sults with high precision. By defining b(r) using the mea-
sured DM 2pCF at the relevant redshift, our results are
essentially cosmic-variance-free. Further, the use of cross-

correlations (instead of autocorrelations) greatly suppresses
the impact of shot-noise in our results (Gao & White 2007;
Angulo et al. 2008b; Smith 2009). This is thanks to the large
number of simulation particles in the MXXL. We note that
some residual noise is still present even in the Gaussian case
(Smith 2009).

We recall that if our samples were simply linearly biased
versions of the underlying DM field, then all curves would

c© 2011 RAS, MNRAS 000, 1–16
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(Angulo, White, Springel & Henriques ’13) 
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Peak velocity dispersion

• For Gaussian initial conditions, velocities correlate with the 
gradient of the density

(BBKS)

• The velocity dispersion of initial density peaks is

�2
vpk = �2

v

⇣
1� �2

0

⌘

u(x) ⇠ r�1�s(x), ⌘(x) = r�s(x)

�0 =
�2
0

��1�1
, 0 < �0 < 1

�2
n =

1

2⇡2

Z 1

0
dk k2(n+1)W 2(kRs)P (k)

where

P
�
u(x)

��⌘(x)
�
6= P

�
u(x)

�
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Peak velocity bias

(VD & Sheth ’10)

• Mean and dispersion of peak pairwise velocity 

r

• The results can be thought as arising from

upk(k) =

✓
1� �2

0

�2
1

k2
◆
W (kRs)u(k)

Dh⇣
upk(x2)� upk(x1)

⌘
· r̂
inE

upk(x1)

upk(x2)
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Peak velocity bias

(VD & Sheth ’10)

• Mean and dispersion of peak pairwise velocity 

r

• The results can be thought as arising from

upk(k) =

✓
1� �2

0

�2
1

k2
◆
W (kRs)u(k)

Dh⇣
upk(x2)� upk(x1)

⌘
· r̂
inE

upk(x1)

upk(x2)

⌘ bvpk(k)
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Peak velocity bias = statistical
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Peak velocity bias = statistical

• This explains why 

�2
vpk =

1

2⇡2

Z 1

0
dk b2vpk(k)W

2(kRs)P (k)

�2
vpk =

1

2⇡2

Z 1

0
dk bvpk(k)W

2(kRs)P (k)

and also

• Strongly constrains the k-dependence of bvpk(k)

(VD & Sheth ’10)
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2dF galaxy redshift survey

Redshift space distortions
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From real to redshift space

• The redshift space, 3-dimensional comoving coordinate is

s = x+
v(x) · x̂
aH

• In linear theory, velocities are related to densities through

• Logarithmic growth rate:

f(a) =
d lnD

d ln a

u(k, a) = i
k

k2
�(k, a)

= x+ f
⇥
u(x) · x̂

⇤
, u ⌘ v

aHf
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From real to redshift space

�
<
0

k̂

x̂

�
>
0
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From real to redshift space

�
<
0

k̂

x̂

E↵ect / (k̂ · x̂)2

u

�
>
0
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The Kaiser formula

• Mass conservation + plane-parallel approximation:

• Redshift space power spectrum

P s(k, µ) =
⇣
1 + fµ2

⌘2
P (k)

• For biased tracers like galaxies:

(Kaiser ’87)

�s(k) =
⇣
1 + fµ2

⌘
�(k), µ ⌘ k̂ · ẑ

P s
gg(k, µ) =

⇣
b1 + fµ2

⌘2
P (k)
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 A test of the nature of cosmic acceleration using redshift space distortions 

 

11  

 

Figure 2 Estimates of the growth rate of cosmic structure compared to predictions 

from various theoretical models. Values of f = βbL are plotted as a function of the 

inverse of the cosmic expansion factor 1 + z = a(t)−
1
. Our new measurement at z = 0.77 

from the VVDS-Wide survey (red circle) is shown together with that from the 2dFGRS, 

computed from the published
21

 value of β; to do this, we adopted the bias value 

bL = 1.0 ± 0.1 estimated from higher-order clustering in the same survey
20

. We have also 

used very recent measurements from the 2dF-SDSS LRG and QSO (2SLAQ) survey of 

luminous red galaxies
27

 (blue open square) to add one further point at z = 0.55. In this 

case, however, the values of β and bL are not fully independent, because they have been 

obtained by imposing simultaneous consistency with the clustering measured at z = 0. In 

practice, this forces the resulting f towards the flat Λ model, that is, ~Ωm
0.55

. A more 

appropriate treatment would require an independent estimate of the bias for this sample
23

; 

this uncertainty is accounted for by the error bars, which in all cases correspond to 68% 

confidence intervals. The solid red line gives the growth rate for the standard 

cosmological-constant flat (Ωm0 = 0.25, ΩΛ0 = 0.75) model, while the dashed red line is 

the corresponding open model with the same matter density but no cosmological constant; 

the blue and green dashed curves describe models in which dark energy is coupled to dark 

matter
5
; the black dot-dashed line is the DGP braneworld model, an extra-dimensional 

Measuring the growth rate

(Peacock et al. ’01)

(Guzzo et al. ’07)

measure � =

f

b1
or f�8
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Kaiser formula for peaks

(VD & Sheth ’10)

P s
pk(k, µ) =

⇣
c1(k) + fbvpk(k)µ

2
⌘2

P��(k)
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Kaiser formula for peaks

(VD & Sheth ’10)

P s
pk(k, µ) =

⇣
c1(k) + fbvpk(k)µ

2
⌘2

P��(k)

         could mimic the signature of some modified gravity, dark 
energy theory, massive neutrinos etc. if it is not accounted for.
bvpk(k)

�e↵(k) =

✓
f

b10

◆
⇥

⇣
1� �2

0

�2
1
k2

⌘

⇣
1 + b01

b10
k2

⌘

fe↵(k) = f ⇥
✓
1� �2

0

�2
1

k2
◆
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Time evolution of spatial bias

• Continuity argument (Fry ‘96; Peebles & Tegmark ‘98)

• Spherical collapse (Mo & White ’96)

From

one finds

b1(a) = 1 +
D(ai)

D(a)

�
b1(ai)� 1

�
, a > ai
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Time evolution of velocity bias

(Chan, Scoccimarro & Sheth 2012, Baldauf et al. 2012)

@�

@⌘
+ ✓ = m.c.

@�g
@⌘

+ ✓g = m.c.

@✓

@⌘
+H✓ +

3

2
H2⌦m� = m.c.

@✓g
@⌘

+H✓g +
3

2
H2⌦m� = m.c.

Matter:

Galaxies:

⌘ ⌘
Z

dt

a
, � ⌘ �(k, ⌘), ✓ ⌘

�
r · v

�
(k, ⌘)where
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Time evolution of velocity bias

(Chan, Scoccimarro & Sheth 2012, Baldauf et al. 2012)

@�

@⌘
+ ✓ = m.c.

@�g
@⌘

+ ✓g = m.c.

@✓

@⌘
+H✓ +

3

2
H2⌦m� = m.c.

@✓g
@⌘

+H✓g +
3

2
H2⌦m� = m.c.

Matter:

Galaxies:

⌘ ⌘
Z

dt

a
, � ⌘ �(k, ⌘), ✓ ⌘

�
r · v

�
(k, ⌘)where

bv(a) = 1 +
D(ai)

D(a)

�
bv(ai)� 1

�
, a > ai
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Evolution of bias in the peak approach

In the Zel’dovich (’70) approximation:
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Evolution of bias in the peak approach

• At linear order, the peak bias factors evolve according to

(VD, Crocce, Scoccimarro & Sheth ’10)

c1(k, a) = bvpk(k, ai) +
D(ai)

D(a)
c1(k, ai)

bvpk(k, a) = bvpk(k, ai)

Scale-independent piece:

Scale-dependent piece:

b10(a) = 1 +
D(ai)

D(a)
b10(ai)

b01(a) = ��2
0

�2
1

+
D(ai)

D(a)
b01(ai)
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Interpretation: gravity is biased

Consider points with zero initial velocity:
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Interpretation: gravity is biased

Matter:

Galaxies:

@�

@⌘
+ ✓ = m.c.

@✓

@⌘
+H✓ +

3

2
H2⌦m� = m.c.

@�g
@⌘

+ ✓g = m.c.

@✓g
@⌘

+H✓g +
3

2
bvpk H2⌦m� = m.c.

We obtain: !!

(Baldauf, VD & Seljak ’14)

bv(k, a) = bvpk(k) +
D(ai)

D(a)

�
bv(k, ai)� 1

�
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Test with numerical simulations
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Lagrangian bias of halos

(Baldauf, VD & Seljak ’14)
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FIG. 1. Initial peak density bias c1(k) (upper panel) and
velocity bias bv(k) (lower panel). Having fit b10, b01 and R
from the density bias, we find irrefutable evidence for a non-
zero Rv in the velocity bias. To highlight this detection, we
overplot the damping introduced by the peak smoothing R
alone in the lower panel as dash-dotted lines. The horizontal
dashed lines show the scale-independent local bias, while the
solid lines show the peak model fits. Halo mass is in the range
8⇥ 1012 � 6⇥ 1014 h�1M� and increases from bottom to top
(top to bottom) in the upper (lower) panel.

We then measure the ratio of the initial halo-
matter and matter-matter density-density and density-
momentum power spectra. In the peak model, at the
lowest order, these quantities are given by

h�m,i(k)�h,i(�k)i
h�m,i(k)�m,i(�k)i =

�
b10 + b01k

2
�
WR(k) (8)

h�m,i(k)jz
h,i(�k)i

h�m,i(k)jz
m,i(�k)i =

�
1 � R2

vk2
�
WR(k) . (9)

In a first step we fit the linear density bias from the den-
sity correlator on large scales, then we jointly fit for the
scale of the Gaussian peak selection function R and the k2

bias term b01 in the same statistic. Subsequently we use
the filter with the same scale to fit the scale-dependence
of the velocity bias and find strong evidence for a non-

zero initial Rv. Fig. 1 shows that this parametrization is
able to reproduce the scale-dependence of the proto-halo
density and velocity bias reasonably well. The choice of
a Gaussian for the peak selection function is motivated
by the sole requirement that the spectral moments of the
Gaussian field should be convergent. This would not be
the case for a top-hat window, but generalized window
functions might provide a better fit and still yield con-
vergent moments.

Next, we turn to the time-dependence of the halo ve-
locity bias. To this purpose, we consider the time evolu-
tion of the linear density-density and density-momentum
correlators. These linear correlators are obtained by
cross-correlating the evolved halo positions and momenta

with the linear Gaussian matter density field �(1)
m =

D+(z)D�1
+ (zi)�m,i. Considering cross-correlations with

the evolved matter field would contaminate the statistics
with the poorly understood late time matter distribu-
tion and, thus, undermine a clear isolation of the scale-
dependencies induced by the peak constraint. We also
refrain from using halo-halo correlators, since these are
likely plagued by non-trivial shot noise e↵ects [3].

We assume that peaks move according to their ini-
tial velocity as in Zeldovich approximation. We cal-
culate the resulting correlators by writing the evolved
peak positions as 1 + �h(x) = n̄�1

h

P
h �(D)(x � xh) =

n̄�1
h

R
d3q�(D)(x�q� (q))

P
pk �(D)(q�qpk) following

the steps laid out in [6], where  (q) is the displacement
field at Lagrangian position q. Since the initial matter
fluctuations are Gaussian, we only select the linear terms
in the bias relation. We finally obtain
⌦
�(1)
m (k)�h(�k)

↵
= D2

+cE
1 (k, a)Gpk(k)P (k)WR(k) , (10)

⌦
�(1)
m (k)jz

h(�k)
↵

=
⇣
bv(k) � D2

+�2
d,pk cE

1 (k, a) k2
⌘

(11)

⇥ Hf+D2
+

✓
i
k · ẑ
k2

◆
Gpk(k)P (k)WR(k) ,

where Gpk(k) = e� 1
3�2

d,pkk2D2
+(a) is the peak propagator

and �2
d,pk is the peak displacement dispersion (extrapo-

lated to the collapse epoch), given by �2
d,pk = �2

�1��4
0/�2

1

with �2
i =

R
d3k/(2⇡)3k2iP (k)W 2

R(k). It is reduced rela-
tive to the linear matter displacement dispersion because
i) ��1 is smaller for halos than for matter due to the finite
smoothing scale R (which is zero for the matter), and ii)
the dark matter preferentially flows onto the peaks, so
statistically the peaks are more at rest than the dark
matter, and the term ��4

0/�2
1 accounts for that. The

analogy with the Eulerian coevolution model in Eqs. (3)
– (4) can only be seen in the low-k limit due to the re-
summation of the displacement dispersions. In principle
third order bias parameters contribute to the density cor-
relator at late times. However, we refrain from consid-
ering these loop contributions since they are of percent
level and hardly distinguishable from the above model
[19, 20].

c1

c1
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Implications

k [h/Mpc]
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

3
(k

) [
M

pc
/h

]
LP

310

410

510 CMASS-DR11 NGC
CMASS-DR11 SGC
best fit NGC
best fit SGC

Monopole

Quadrupole

k [h/Mpc]
0.05 0.1 0.15 0.2

0P
σ/ 0P∆ -4

-2
0
2
4  = 79.82χ

k [h/Mpc]
0.05 0.1 0.15 0.2

2P
σ/ 2P∆ -4

-2
0
2
4  = 68.72χ

(Beutler et al ’14)10%� 20%
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Summary

• Scale-dependent corrections to the halo bias factors even at the 
linear level.

• Dark matter halos exhibit a statistical velocity bias which 
propagates into redshift space statistics such as the power 
spectrum.

• No new free parameters. All the bias factors are fully determined 
once the halo mass function is known 

The peak approach is a great toy model to understand the nonlinearity,
scale-dependence and stochasticity of bias
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