The role played by nova explosions in the origin of lithium-7 and cosmic rays

Margarita Hernanz

Institut de Ciències de l'Espai - ICE (CSIC-IEEC) Bellaterra (Barcelona), Spain

IAP colloquium - 23th October 2015

Possible Nova in DEL (PNV J20233073+2046041) 2013, August 14.8 Single 60-second exposure 0.43-m f/6.8 astrograph + CCD Remotely from iTelescope network (MPC code 189 - Nerpio, Spain) Ernesto Guido & Nick Howes http://remanzacco.blogspol.com

What's a nova?

"Nova stella"

Very often discovered by amateur astronomers

Nova Cygni 1975

What's a nova?

A thermonuclear explosion of H on top of an accreting white dwarf in a close binary system

Two recent discoveries about nova explosions

Two recent discoveries about nova explosions

Observational confirmation of ⁷Li synthesis during nova explosions: relevance for the origin of lithium in the Universe

19 FEBRUARY 2015 | VOL 518 | NATURE | 381

LETTER

doi:10.1038/nature14161

Tajitsu et al. 2015, Nature

Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013)

Akito Tajitsu¹, Kozo Sadakane², Hiroyuki Naito^{3,4}, Akira Arai^{5,6} & Wako Aoki⁷

found. Here we report the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, ⁷Be, in the near-ultraviolet spectra of the classical nova V339 Del (Nova Delphini 2013) 38 to 48 days after the explosion. ⁷Be decays to form ⁷Li within a short time (half-life of 53.22 days⁴). The ⁷Be was created during the

> ASTROPHYSICS 19 FEBRUARY 2015 | VOL 518 | NATURE | 307 A lithium-rich Stellar explosions The contribution of explosions known as novae to the lithium content of the

The contribution of explosions known as novae to the lithium content of the Milky Way is uncertain. Radioactive beryllium, which transforms into lithium, has been detected for the first time in one such explosion. SEE LETTER P.381

MARGARITA HERNANZ

during supernova explosions and their dimmer

Detection of ⁷Li in Nova Cen 2013

The Astrophysical Journal Letters, 808:L14 (5pp), 2015 July 20

© 2015. The American Astronomical Society. All rights reserved.

doi:10.1088/2041-8205/808/1/L14

EARLY OPTICAL SPECTRA OF NOVA V1369 CEN SHOW THE PRESENCE OF LITHIUM

Luca Izzo^{1,2}, Massimo Della Valle^{2,3}, Elena Mason⁴, Francesca Matteucci⁵, Donatella Romano⁶, Luca Pasquini⁷, Leonardo Vanzi⁸, Andres Jordan⁹, José Miguel Fernandez¹⁰, Paz Bluhm¹⁰, Rafael Brahm¹⁰, Nestor Espinoza¹⁰, and Robert Williams¹¹

ABSTRACT

We present early high-resolution spectroscopic observations of the nova V1369 Cen. We have detected an absorption feature at 6695.6 Å that we have identified as blueshifted ⁷Li I λ 6708 Å. The absorption line, moving at -550 km s^{-1} , was observed in five high-resolution spectra of the nova obtained at different epochs. Based on the intensity of this absorption line, we infer that a single nova outburst can inject in the Galaxy $M_{\text{Li}} = 0.3-4.8 \times 10^{-10}$ M_{\odot} . Given the current estimates of the Galactic nova rate, this amount is sufficient to explain the puzzling origin of the overabundance of lithium observed in young star populations.

Izzo et al. 2015, ApJ

Two recent discoveries about nova explosions

Observational confirmation of ⁷Li synthesis during nova explosions: relevance for the origin of lithium in the Universe

Detection of HE gamma-rays (E > 100 MeV) from a handful of novae: novae as accelerators of particles and thus origin of cosmic rays

Other Novae detected in (HE) gamma-rays Fermi/LAT - E>100 MeV

Fermi establishes classical novae as a distinct class of gamma-ray sources

The Fermi-LAT Collaboration*+

Science 345, 554 (2014)

A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in γ rays and stood in contrast to the first γ -ray-detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft-spectrum transient γ -ray sources detected over 2- to 3-week durations. The γ -ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic γ -ray sources.

- V407 Cyg: WD + red giant (wind) system (symbiotic recurrent nova)
- Classical Novae: WD + MS

- Introduction on novae
- Origin of ⁷Li (galactic, cosmic)
 - Role played by novae
 - Models
 - First detections in novae: ⁷Be-⁷Li (UV) and ⁷Li (optical)
 - Implications. Gamma-rays from novae in the MeV range: relationship with synthesis and ejection of radioactive isotopes - $^{7}\text{Be} \rightarrow ^{7}\text{Li}$
- HE gamma-rays: discoveries by Fermi/LAT
 - Symbiotic recurrent novae vs. classical novae
 - Prediction for RS Oph (pre-Fermi launch). Relevance for cosmic rays origin
- Summary

Novae observations: optical light curves

L increases very fast by factors greater than 10^4 - absolute L_{max} : ~10⁴⁻⁵ L_{\odot}

Novae observations: optical light curves

Dip in the LC related to dust formation

Novae observations: light curve of Nova Sgr 2015 No.2

AAVSO

Light Curve Generator (LCG)

- Plot another light curve Search observations for PNV J18365700-2855420
- Create star chart for PNV J18365700-2855420
 Search VSX for PNV J18365700-2855420

Novae observations: optical light curves

L increases very fast by factors $\geq 10^4$

Novae observations: light curves

Novae observations: optical light curve. Rate of decline-luminosity relationship (MMRD)

Abundances in novae ejecta from optical and UV spectra

Object	Year	Reference	Н	He	С	Ν	0	Ne	Na-Fe	Z	(Z/Z_\odot)	$({\rm Ne}/{\rm Ne}_{\odot})$	CNO/Ne-Fe
Solar		1	0.71	0.27	0.0031	0.001	0.0097	0.0018	0.0034	0.019	1.0	1.0	2.7
T Aur,	1891	2	0.47	0.40		0.079	0.051			0.13	6.8		
RR Pic	270		100	\mathbf{r}	7-0	06-	. / 5 -	7 . NI	~ -0	EC-		No	2.9
DQ Her V	316	JAQI	190	52	Z-U.	00-	·43 4	\leq_{\odot} , IN	e-0.	-0C	-290	INe _o	
DQ Her	1007		0.27	0.10	0.0.0	0.2.9	0.2.2			0.07	50.		
HR Del	1967	6	0.45	0.48		0.027	0.047	0.0030		0.077	4.1	1.7	25.
V1500 Cyg	1975	7	0.49	0.21	0.070	0.075	0.13	0.023		0.30	16.	13.	12.
V1500 Cyg	1975	8	0.57	0.27	0.058	0.041	0.050	0.0099		0.16	8.4	5.6	15.
V1668 Cyg	1978	9	0.45	0.23	0.047	0.14	0.13	0.0068		0.32	17.	3.9	47.
V1668 Cyg	1978	10	0.45	0.22	0.070	0.14	0.12			0.33	17.		
V693 CrA	1981	11	0.40	0.21	0.004	0.069	0.067	0.023		0.39	21.	128.	
V693 CrA	1981	12	0.29	0.32	0.046	0.080	0.12	0.17	0.016	0.39	21.	97.	1.3
V693 CrA	1981	10	0.16	0.18	0.0078	0.14	0.21	0.26	0.030	0.66	35.	148.	1.2
V1370 Aql	1982	13	0.053	0.088	0.035	0.14	0.051	0.52	0.11	0.86	45.	296.	0.36
V1370 Aql	1982	10	0.044	0.10	0.050	0.19	0.037	0.56	0.017	0.86	45.	296.	0.48
GQ Mus	1983	14	0.37	0.39	0.0081	0.13	0.095	0.0023	0.0039	0.2 4	13.	1.2	38.
PW Vul	1984	15	0.69	0.25	0.0033	0.049	0.014	0.00066		0.067	3.5	0.38	100.
PW Vul	1984	10	0.47	0.23	0.073	0.14	0.083	0.0040	0.0048	0.30	16.	2.3	34.
PW Vul	1984	16	0.617	0.247	0.018	0.069	0.0443	0.001	0.0027	0.14	7.7	1.	31.
QU Vul	1984	17	0.30	0.60	0.0013	0.018	0.039	0.040	0.0049	0.10	5.3	23.	1.3
OU Vul	1984	10	0.33	0.26	0.0095	0.074	0.17	0.086	0.063	0.40	21.	49.	1.7
QU Vul	1984	18	0.36	0.19		0.071	0.19	0.18	0.0014	0.44	23.	100.	1.4
V842 Cen	1986	10	0.41	0.23	0.12	0.21	0.030	0.00090	0.0038	0.36	19.	0.51	77.
V827 Her	1987	10	0.36	0.29	0.087	0.24	0.016	0.00066	0.0021	0.35	18.	0.38	124.
QV Vul	1987	10	0.68	0.27		0.010	0.041	0.00099	0.00096	0.053	2.8	0.56	26.
V2214 Oph	1988	10	0.34	0.26		0.31	0.060	0.017	0.015	0.40	21.	9.7	12.
V977 Sco	1080	10	0.51	0.30		0.042	0.030	0.026	0.0027	0.10	5.2	15	2.5
V433 Set		1 100	λ	7-0		-00	フ .		10-	-100			33.
V351 Pup	Γνι	11 190)4_		7.44-	-23	\mathbf{Z}_{\bigcirc} ,	ne-l	Л. ГО-		JINE	· 🕢 📃	2.4
V1974 Cyg	1992	18	0.19	0.32		0.085	0.29	0.11	0.0051	0.49	27.	68.	3.2
V1974 Cyg	1992	20	0.30	0.52	0.015	0.023	0.10	0.037	0.075	0.18	9.7	21.	3.1
V838 Her	1991	11	0.60	0.31	0.012	0.012	0.004	0.056		0.09	0.11	31.	

Gehrz et al 1998, PASP

Abundance determinations from IR observations

Gehrz et al 1998, PASP

Nova	Х	Y	$\frac{(n_N/n_T)_{norm}}{(n_N/n_T)_{\odot}}$
QU Vul/1984 #2	Ne	Н	≥1.2
QU Vul/1984 #2	Al	Si	70
QU Vul/1984 #2	Mg	Si	4.7
QU Vul/1984 #2	Ne	Si	≥6.4
V1974 Cyg/1992	Ne	Н	≥4
V1974 Cyg/1992	Ne	Н	≥ 10
V1974 Cyg/1992	Ne	Si	≈35
V1974 Cyg/1992	Al	Si	≈5
V1974 Cyg/1992	Mg	Si	≥3
V1974 Cyg/1992	С	Н	≈12
V1974 Cyg/1992	Ν	Н	≈50
V1974 Cyg/1992	0	Н	≈25
V1974 Cyg/1992	Ne	Н	≈50
V1974 Cyg/1992	Mg	Н	≈5
V1974 Cyg/1992	Al	Н	≈5
V1974 Cyg/1992	Si	Н	≈6
V1974 Cyg/1992	S	Н	≈5
V1974 Cyg/1992	Ar	Н	≈5
V1974 Cyg/1992	Fe	Н	≈4
V1974 Cyg/1992	Ne	0	≈4
V705 Cas/1993	Silicates	Н	≈15
V705 Cas/1993	С	Н	≈45
Nova Aql/1995	С	Н	≤0.6

- > Expansion velocities of the ejecta ~ 10^2 - 10^3 km/s
- \succ Ejected masses ~ 10⁻⁵ 10⁻⁴ M_{\odot}
- Energetics and luminosity: K.E.~10⁴⁵ erg

 $L = 10^5 L_{\odot}$ close to $L_{Eddington}$

- > Ejecta enhanced in C, N, O, Ne w.r.t. solar
- Nova rate in the Milky Way: ~ 35 ± 11 per yr (Shafter 1997), but only a few discovered optically

What's a nova?

Reminder: A thermonuclear explosion of H on top of an accreting white dwarf in a close binary system

White dwarfs

- Endpoints of stellar evolution (M< $10M_{\odot}$): no E_{nuc} available; compression until electrons become degenerate
- Chemical composition: He, CO, ONe; masses: typical 0.6 M_☉, maximum: M_{Chandrasekhar} (~1.4M_☉)
- When isolated, they cool down to very low L (~10^{-4.5}L $_{\odot}$):

"fossils" allowing to do "stellar archeology" (age of the Galaxy, star formation rate)

• When in interacting binary systems, they can be "rejuvenated" and eventually explode

Rejuvenation of white dwarfs in close binary systems

Effect of accretion: depends on L and M of the WD, accretion rate and chemical comp. of accreted matter \rightarrow properties of the binary system: M₁, M₂, P_{orb}-A, (dM/dt)_{acc}

- "central" explosive C burning → total disruption of the star, thermonuclear Supernova (SNIa): KE~10⁵¹ erg, M_{ejected} ~ M_{WD} (1M_☉~10³³g), v_{ejec} ~ 10⁴ km/s, ≤1/100 yr in the Galaxy
 - explosive H-nuclear burning on top of the WD → envelope ejection, nova explosion: KE~10⁴⁵ erg, $M_{ejected} \sim 10^{-4-5} M_{\odot}$, $v_{ejec} \sim 10^{2-3} \text{ km/s}$ - No disruption of the WD star → recurrent phenomenon
 - **classical nova**: $P_{rec} \sim 10^4 10^5$ yr, $\sim 35/yr$ in the Galaxy
 - recurrent nova: P_{rec}< 100 yr, <10 known in the Galaxy

Nova explosions: white dwarfs in close binary systems (single degenerate)

P_{recurrence}~10⁴-10⁵ yr

Symbiotic binary: WD + Red Giant

accretion from a red giant wind

- P_{recurrence}<100 yrs
- Occur in massive WDs
- M_{wd} can increase → possible scenarios of type la supernova explo.

White dwarf in a binary system: scenario of nova explosions

Mass transfer from the companion star onto the white dwarf Hydrogen burning in degenerate conditions on top of the white dwarf Thermonuclear runaway **Explosive H-burning**

Decay of short-lived radioactive nuclei in the outer envelope (transported by convection)

Envelope expansion, L increase and mass ejection

Nova Models: Thermonuclear Burning of Hydrogen. CNO cycles

Nova models: main nuclear reactions (NeNa-MgAl)

Recent review on nova nucleosynthesis: José, Hernanz & Iliadis, NuPhA 2006

Implications of observed properties of CNe for the scenario of SNIa explosions

Ejecta enhanced in C, N, O, Ne w.r.t. solar

(Z observed >> solar) in classical novae

proof of mixing between WD core and envelope \rightarrow M_{wd} decreases

BUT *no enhancements* observed in *recurrent novae* → does M_{wd} increase?

Are novae (classical or recurrent) scenarios for thermonuclear supernovae?

Additional issue: (originally) massive WDs are made of ONe and not CO, and thus would not explode

Origin of Lithium (7Li)

Three main sources

□ Primordial origin: nucleosynthesis during the Big Bang

Spallation reactions: interaction of cosmic rays with atoms in the interstellar medium

□ Stellar origin: low-mass stars: red giants, nova explosions.

- Detected for the first time in a nova explosion (⁷Be-⁷Li), by Tajitsu et al. Nature, 19 Feb. 2015. News & Views by MH, Nature same volume
- Direct detection of ⁷Li in V1369 Cen (Nova Cen 2013) by Izzo et al., ApJ Letters (2015)
- Prediction made several decades ago: Starrfield et al., ApJ 1978, Hernanz, José, Coc, Isern, ApJ L 1996

Origin of the elements

- Stellar nucleosynthesis: all the elements up to Fe except H, Li, Be, B – are produced inside stars. All larger Z elements come from explosive nucleosynthesis
- Enrichment of the galactic gas: stellar winds and supernova (+nova) explosions
- LiBeB not formed inside the stars, but they can be produced in external H-burning shells: low-mass red giants, nova explosions

Big Bang Nucleosynthesis

Coc, Vangioni et al. 2004, ApJ Predicted abundances ⁴He, ²H (D), ³He, 7Li

WMAP - Wilkinson Microwave Anisotropy Probe: constraints on the baryonic density of the Universe (Spergel et al. 2003): $\Omega_b h^2 = 0.0224 + - 0.0009$ (h=H/100 km/s/Mpc)

η = (6.14 +/- 0.25) 10⁻¹⁰ (baryon to photon ratio)

Big Bang Nucleosynthesis

Coc et al. 2004, ApJ

Big Bang Nucleosynthesis

Primordial Abundances of H, He, and Li Isotopes at WMAP7 Baryonic Density

Nb. Reactions	CV10	This Work	This Work	Observations		
	13 (+2)	15	424			
Yp	0.2476 ± 0.0004	0.2475	0.2476	0.2561 ± 0.0108		
$D/H (\times 10^{-5})$	2.68 ± 0.15	2.64	2.59	2.82 ± 0.2		
$^{3}\text{He/H}(\times 10^{-5})$	1.05 ± 0.04	1.05	1.04	1.1 ± 0.2		
$^{7}\text{Li/H}(\times 10^{-10})$	5.14 ± 0.50	5.20	5.24	1.58 ± 0.31		
$^{6}\text{Li/H}(\times 10^{-14})$	1.3 ^a	1.32	1.23	~1000 (?)		

Notes. CV10: Coc & Vangioni (2010), using $\Omega_b \cdot h^2$ from Spergel et al. (2007). This work uses the new Komatsu et al. (2011) value.

^a Hammache et al. (2010).

- No large effect of new nuclear network and new reaction rates on ⁷Li predicted primordial abundance
- Still large deviation from observations: *calculated abundance higher than spectroscopic observations by a factor of* ~3.5

Coc et al. 2012, ApJ: improved and extended nuclear network

Big Bang Nucleosynthesis update

Coc, Uzan, Vangioni 2014, JCAP

Predicted abundances of 4 He, 2 H (D), 3 He, ${}^{7}Li$ versus the baryonic density Ω_{b} or the baryon to photon ratio η

WMAP & Planck

constraints on baryonic density indicated

 $\Omega_b h^2 = 0.022184 + -0.00026$ (Planck) 34

Models of chemical evolution of the Galaxy

Fig. 16. Evolution of Li (*top*) according to our Model A (see Table 1) and percentages of its various components (*bottom*): ⁷Li from GCR (dot-dashed), ⁶Li from GCR (dotted), ⁷Li from *v*-nucleosynthesis (NN, dashed) and ⁷Li from a delayed stellar source (novae and/or AGB stars, long dashed). Solid curves indicate total Li (*upper* panel) and primor-dial ⁷Li (*lower* panel). Abundance data (*upper panel* for halo stars are

Astron. Astrophys. 352, 117-128 (1999)

The galactic lithium evolution revisited*

D. Romano^{1,2}, F. Matteucci^{3,1}, P. Molaro², and P. Bonifacio²

¹ SISSA/ISAS, Via Beirut 2–4, 34014 Trieste, Italy

² Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, 34131 Trieste, Italy

³ Dipartimento di Astronomia, Università di Trieste, Via G.B. Tiepolo 11, 34131 Trieste, Italy

Received 26 April 1999 / Accepted 5 October 1999

In order to reproduce the upper envelope of the A(Li) vs Li sources: AGB stars, Type II SNe and novae. In particular, novae are required to reproduce the steep rise of A(Li) between the formation of the Solar System and the present time, as is evident from the data we sampled. On the other hand, ⁷Li yields for SNeII should be lowered by at least a factor of two in order to reproduce the extension of the Spite plateau.

Romano, Matteucci et al. 1999, A&A

⁷Li

Models of chemical evolution of the Galaxy
Models of chemical evolution of the Galaxy

THE ASTROPHYSICAL JOURNAL LETTERS, 808:L14 (5pp), 2015 July 20

Izzo et al., including Matteucci, 2015, **related to Li7 discovery in N Cen 2013**

Figure 5. A(Li) vs. [Fe/H] for solar neighborhood stars and meteorites (symbols; see legend) compared to the predictions of chemical evolution models (lines and colored areas). The back and forth behavior in the theoretical curves around [Fe/H] = -0.8 is due to the transition between the halo/thick-disk and thin-disk formation phases (see the text).

Synthesis of ⁷Li in novae

THE ASTROPHYSICAL JOURNAL, 222:600-603, 1978 June 1 © 1978. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Starrfield et al. 1978, ApJ

ON 7Li PRODUCTION IN NOVA EXPLOSIONS*

SUMNER STARRFIELD

Department of Physics, Arizona State University; and Los Alamos Scientific Laboratory

JAMES W. TRURAN Department of Astronomy, University of Illinois

WARREN M. SPARKS Laboratory for Astronomy and Solar Physics, Goddard Space Flight Center

AND

MARCEL ARNOULD[†] Institut für Kernphysik, Technische Hochschule Darmstadt, Germany Received 1977 September 26; accepted 1977 December 5

ABSTRACT

Calculations of ⁷Li production occurring as a concomitant of thermonuclear runaways in hydrogen envelopes of white dwarfs are reported. It is found that sufficient ⁷Li can be produced in models displaying fast-nova-like features to suggest that the corresponding objects represent significant contributors to the ⁷Li enrichment of galactic matter. The sensitivities of these results to various assumptions and uncertainties are discussed.

THE ASTROPHYSICAL JOURNAL, 465:L27–L30, 1996 July 1 © 1996. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Hernanz et al. 1996, ApJ Let.

ON THE SYNTHESIS OF 7Li AND 7Be IN NOVAE

MARGARITA HERNANZ Centre d'Estudis Avançats de Blanes (CSIC), Camí de Santa Bàrbara s/n, E-17300 Blanes, Spain

Jordi José

Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Avenida Víctor Balaguer s/n, E-08800 Vilanova i la Geltrú, Spain

ALAIN COC

Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3-CNRS, Bâtiment 104, F-91405 Orsay Cedex, France

AND

JORDI ISERN

Centre d'Estudis Avançats de Blanes (CSIC), Camí de Santa Bàrbara s/n, E-17300 Blanes, Spain Received 1996 January 31; accepted 1996 April 15

ABSTRACT

The production of ⁷Li and ⁷Be during the explosive hydrogen burning that occurs in nova explosions is computed by means of a hydrodynamic code able to treat both the accretion and the explosion stages. Large overproduction factors with respect to solar abundances are obtained, the exact value depending mainly on the chemical composition of the envelope. Although the final ejected masses are small, these results indicate that novae can contribute to the ⁷Li enrichment of the interstellar medium. Furthermore, since ⁷Be decays by emitting a gamma ray (478 keV), with a half-life of 53.3 days, the synthesis of ⁷Li could be tested during the *INTEGRAL* mission.

Also: Arnould & Nordgaard, 1975, A&A

Thermonuclear burning of H: p-p chains

Nuclear reactions producing ⁷Li

Cameron-Fowler ⁷Be transport mechanism to produce ⁷Li: fresh produced ⁷Be should be transported outwards to cooler regions to avoid being destroyed

Nova models: theoretical predictions of ⁷Li ejected masses

⁷Li Yields and Ejected Masses for Some Nova Models

Composition	$M_{ m wd}$ (M_{\odot})	\dot{M} $(M_{\odot} \text{ yr}^{-1})$	<i>X</i> (⁷ Li)	$\frac{N(^{7}\text{Li/H})}{N(^{7}\text{Li/H})_{\odot}}$	$M_{ m tot}^{ m ej}$ (M_{\odot})	$M^{ m ej}_{7_{ m Li}}$ (M_{\odot})
CO CO ONe ONe ONe	1.0 1.15 1.15 1.25 1.25	$\begin{array}{c} 2 \times 10^{-10} \\ 2 \times 10^{-10} \\ 2 \times 10^{-10} \\ 2 \times 10^{-10} \\ 2 \times 10^{-8} \end{array}$	$\begin{array}{r} 3.1 \times 10^{-6} \\ 8.2 \times 10^{-6} \\ \hline 6.0 \times 10^{-7} \\ 6.5 \times 10^{-7} \\ 7.9 \times 10^{-7} \end{array}$	742 1952 143 155 187	$\begin{array}{c} 2.3 \times 10^{-5} \\ 1.3 \times 10^{-5} \\ 1.9 \times 10^{-5} \\ 1.8 \times 10^{-5} \\ 8.3 \times 10^{-6} \end{array}$	$\begin{array}{c} 7.1 \times 10^{-11} \\ 1.1 \times 10^{-10} \\ 1.1 \times 10^{-11} \\ 1.2 \times 10^{-11} \\ 6.7 \times 10^{-12} \end{array}$

Hernanz, José, Coc, Isern 1996, ApJ Lett José & Hernanz 1998, ApJ

Nova Nucleosynthesis and chemical evolution of the Galaxy

 M_{eiec} (theor.) ~ 2x10⁻⁵ M_{\odot}/nova $R(novae) \sim 35 novae/yr$ Age of the Galaxy $\sim 10^{10}$ yrs $M_{eiec,total}(novae) \sim 7x10^{6} M_{\odot} = (7x10^{-4} M_{\odot}/yr) \approx 1/3000 M_{gal}(gas+dust)$

Novae can account for the galactic abundances of the isotopes they overproduce (w.r.t. sun) by factors \geq 3000

Novae nucleosynthesis: overproductions w.r.t. solar

Novae nucleosynthesis: overproductions w.r.t. solar

Novae nucleosynthesis: overproductions w.r.t. solar

In spite of several observational efforts, ⁷Li had never been detected in any nova until very recently, in 2015

19 FEBRUARY 2015 | VOL 518 | NATURE | 381

LETTER

doi:10.1038/nature14161

Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013)

Akito Tajitsu¹, Kozo Sadakane², Hiroyuki Naito^{3,4}, Akira Arai^{5,6} & Wako Aoki⁷

found. Here we report the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, ⁷Be, in the near-ultraviolet spectra of the classical nova V339 Del (Nova Delphini 2013) 38 to 48 days after the explosion. ⁷Be decays to form ⁷Li within a short time (half-life of 53.22 days⁴). The ⁷Be was created during the

The contribution of explosions known as novae to the lithium content of the Milky Way is uncertain. Radioactive beryllium, which transforms into lithium, has been detected for the first time in one such explosion. SEE LETTER P.381

MARGARITA HERNANZ

during supernova explosions and their dimmer

Detection of ⁷Be (⁷Li) in Nova Del 2013 (CO nova)

Detection of ⁷Be (⁷Li) in Nova Del 2013

- Subaru Telescope: 8.2-m diameter. Mauna Kea (Hawaï)
- High Dispersion Spectrograph (HDS): spectral resolution 60 000 -90 000 (0.0052 nm @ 312-313 nm)

Detection of ⁷Be (⁷Li) in Nova Del 2013

- Subaru Telescope: 8.2-m diameter. Mauna Kea (Hawaï)
- High Dispersion Spectrograph (HDS): spectral resolution 60 000 -90 000 (0.0052 nm @ 312-313 nm)
- Able to distinguish ⁹Be II doublet at 313.0422 nm & 313.1067 nm from the ⁷Be II doublet at 313.0583 nm & 313.1228 nm
- Blueshifted lines with 1103 & 1268 km/s (also H and Ca)

Detection of ⁷Be (⁷Li) in Nova Del 2013

Detection of ⁷Be (⁷Li) in Nova Del 2013 -Summary

- X(7Be, th, max.)= 10^{-5.1} = 8.2x10⁻⁶
- X(7Be, obs)= $10^{-4.3+/-0.3} = 5.0 \times 10^{-5}$

obs. factor 6 larger than predicted

- Novae could be much larger contributors to galactic ⁷Li than expected
- Interesting way to detect ⁷Li through its parent radioactive nucleus ⁷Be

Detection of ⁷Li in Nova Cen 2013

THE ASTROPHYSICAL JOURNAL LETTERS, 808:L14 (5pp), 2015 July 20

Figure 3. Identification of Li 1 6708 (left), Ca 1 4227 (middle), and K 1 7699 (right) features by direct comparison with the Na 1 D2 5890 Å P-Cygni absorption in the day 7 (upper panels) and day 13 (lower panels) spectra. All the features share the same expansion velocity ($v_{exp,F1} = -550 \text{ km s}^{-1}$, $v_{exp,F2} = -560 \text{ km s}^{-1}$) as that of sodium.

Izzo et al. 2015, ApJ

IZZO ET AL.

Models of chemical evolution of the Galaxy

THE ASTROPHYSICAL JOURNAL LETTERS, 808:L14 (5pp), 2015 July 20

Izzo et al. 2015

Figure 5. A(Li) vs. [Fe/H] for solar neighborhood stars and meteorites (symbols; see legend) compared to the predictions of chemical evolution models (lines and colored areas). The back and forth behavior in the theoretical curves around [Fe/H] = -0.8 is due to the transition between the halo/thick-disk and thin-disk formation phases (see the text).

⁷Li is also important for the gamma-ray emission - MeV range - of novae

Why do novae emit gamma-rays with E~1 MeV? Main radioactive isotopes synthesized in novae

Nucleus	τ	Type of emission	Nova type
¹³ N	862 s	∫ 511 keV line continuum (E<511 keV)	CO and ONe
¹⁸ F	158 min	511 keV line continuum (E<511 keV)	CO and ONe
→ ⁷ Be	77 days	478 keV line	CO mainly
²² Na	3.75 yr	1275 keV line	ONe
²⁶ AI	1.0X10 ⁶ yr	1809 keV line	ONe

Spectra of CO novae

 M_{WD} = 1.15 M_{\odot}

Spectra of ONe novae

 M_{WD} = 1.15-1.25 M_{\odot}

- continuum and 511 keV line
- as in CO novae but photoelectric absorption
 cutoff at 30 keV
- 1275 keV line from ²²Na decay

• 1.15 & 1.25 M_{\odot} : 1.25 more transparent \rightarrow larger emission early and smaller later

New nucleosynthesis from José, with Iliadis et al. nucl. react. 2010-2011: less ¹⁸F – Chaffa et al., DeSéréville et al., ...

Light curves: 478 keV (⁷Be) line

Mainly in CO novae t_{max} : 5 days (1.15 M_o) duration: some weeks Flux : (1-2)x10⁻⁶ ph/cm²/s Line width: 3-7 keV \rightarrow ⁷Be decays into

Gamma-rays from radioactivities: E ~ 1 MeV

478 keV line from ⁷Be decay into ⁷Li searched but not found yet: in agreement with models, because fluxes are too low for typical distances of novae. d<0.5 kpc would be required. Similar for 1275 keV line from ²²Na decay Wait for new missions like ASTROGAM (Compton camera) Discovery of HE (E > 100 MeV) gamma-ray emission from novae, with the Fermi satellite Proof of acceleration of cosmic rays in novae

Two types of gamma-ray emission from novae

- Radioactivity in the ejecta:
 - traces nucleosynthesis directly
 - photons with E ~ MeV expected
 - not detected yet (CGRO/Comptel, INTEGRAL/ SPI)
- Particle acceleration in strong external shocks between ejecta and circumstellar material (or internal shocks within the ejecta):
 - red giant wind in symbiotic recurrent nova
 - "dense circumstellar matter"
 - ➢ IC (leptonic) or π⁰ decay (hadronic) → photons with E>100 MeV
 - detected with the Fermi/LAT satellite

High Energy (HE) Gamma-rays : E > 100 MeV, GeV "Fermi/LAT novae"

First Nova detected in (HE) gamma-rays Fermi/LAT - E>100 MeV

Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cyqni SCIENCE VOL 329 13 AUGUST 2010

The Fermi-LAT Collaboration*†

Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable γ -ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce π^0 decay γ -rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.

First nova detected in (HE) gamma-rays Fermi/LAT - E>100 MeV

Abdo et al. 2010, Science

Fermi establishes classical novae as a distinct class of gamma-ray sources

The Fermi-LAT Collaboration*†

Science 345, 554 (2014)

A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in γ rays and stood in contrast to the first γ -ray-detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft-spectrum transient γ -ray sources detected over 2- to 3-week durations. The γ -ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic γ -ray sources.

- V407 Cyg: WD + red giant (wind) system (symbiotic recurrent nova)
- CNe: WD + MS have also been discovered by Fermi at E>100 MeV

Discrimination between hadronic and leptonic emission models not easy with current sensitivities

Fig. 3. Fermi-LAT >100-MeV average γ -ray spectra of the four novae over the full 17- to 27-day durations. Vertical bars indicate 1 σ uncertainties for data points with significances >2 σ otherwise, arrows indicate 2 σ limits. The best-fit hadronic and leptonic model curves are overlaid.

Binary orbits as the driver of γ -ray emission mass ejection in classical novae

Laura Chomiuk¹, Justin D. Linford¹, Jun Yang^{2,3,4}, T. J. O'Brien⁵, Zsolt Paragi³, Amy J. Mioduszewski⁶, R. J. Be C. C. Cheung⁷, Koji Mukai^{8,9}, Thomas Nelson¹⁰, Valério A. R. M. Ribeiro¹¹, Michael P. Rupen^{6,12}, J. L. Sokolosk Jennifer Weston¹³, Yong Zheng¹³, Michael F. Bode¹⁴, Stewart Eyres¹⁵, Nirupam Roy¹⁶ & Gregory B. Taylor¹⁷

Nature, 2014

ejecta. Here we report high-resolution radio imaging of the γ -rayemitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion^{6,7}. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of γ -ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae⁸, explaining why many novae are
Fermi/LAT detection of Nova Cen 2013 ATels #5649, 5653 10-12/12/2013

Fermi-LAT Gamma-ray Observations of Nova Cen 2013 C. C. Cheung (NRL), P. Jean (IRAP, Toulouse), on behalf of the Fermi/LAT collaboration, S. N. Shore (U. Pisa and INFN)

The Fermi Gamma-ray Space Telescope began a Target of Opportunity (ToO) observation of the classical nova V1369 Centauri = Nova Cen 2013 (IAUC 9265) December 6. Preliminary analysis shows that the nova was detected at ~4 sigma by the LAT in three days of exposure from December 7-10, with an average flux, $F(E>100 \text{ MeV}) \sim (2.1 + -0.6) \times 10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1}$. The gamma-ray detection began ~2 days after the optical peak (pre-validated AAVSO lightcurve), similar to the recent case of Nova V339 Del 2013 (ATEL #5302). The extinction toward V1369 Cen (ATEL #5639) is comparable to V339 Del and may be similarly close in distance.

Fermi-LAT Observations of Nova Cen 2013 Brightening in gamma-rays

Following the initial ~4 sigma Fermi-LAT detection of Nova V1369 Cen 2013 from December 7-9 (ATEL #5649), preliminary analysis indicates the nova brightened in gamma rays, with a twoday average flux, $F(E>100 \text{ MeV}) \sim (5.7 +/-1.2) \times 10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1}$ (7 sigma detection) during December 10-11. The flux is a factor of ~2.7 times greater than in the initial December 7-9 detection and the gamma-ray brightening appears to coincide with a second optical maximum in the pre-validated AAVSO light curve.

Classical nova - No Red Giant companion

Fermi/LAT tentative detection of V745 Sco (a symbiotic recurrent nova): ATel #5879, 12 Feb. 2014

Fermi-LAT Gamma-ray Observations of Recurrent Nova V745 Sco

C. C. Cheung (NRL), P. Jean (IRAP, Toulouse), on behalf of the Fermi/LAT collaboration, S. N. Shore (U. Pisa and INFN)

We report Fermi Gamma-ray Space Telescope observations of the recurrent nova V745 Sco discovered in outburst on 2014 February 6.694 UT (CBET 3803). Preliminary analysis of the Fermi-LAT data indicates the largest observed significances on Feb 6th and 7th of 2 and 3 sigma, respectively, with a peak daily flux, $F(E>100 \text{ MeV}) \sim (3 + -1) \times 10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1}$ (statistical error only; photon index of 2.2 was assumed). No significant emission was detected in the subsequent days (through the end of Feb 10th) with daily flux upper limits <(2-3) x 10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1} (95% confidence). Note that since Feb 5, Fermi recommenced a modified sky survey profile favoring the Galactic center region

Symbiotic recurrent nova: Red Giant companion. Nova ejecta - RG wind interaction

Fermi-LAT Gamma-ray Observations of Nova Sagittarii 2015 No. 2

C. C. Cheung (NRL), P. Jean (IRAP, Toulouse), on behalf of the Fermi/LAT collaboration, S. N. Shore (U. Pisa and INFN)

 $F(E>100 \text{ MeV}) = (1.4 \pm 0.6) \times 10^{-7} \text{ ph/cm}^2/\text{s} (3.8 \text{ sigma})$

Detectable gamma-ray emission was found ~1.5 days after the optical emission peak at around March 21.5, 2015, similar to previous cases

Classical nova - No Red Giant companion

Summary: 7 Fermi/LAT nova detections

5 CNe (WD + MS) & 2 SyRNe (WD + RG)

First evidence of particle acceleration – p & e - to TeV energies in nova *predicted before Fermi launch*

EVIDENCE FOR NONLINEAR DIFFUSIVE SHOCK ACCELERATION OF COSMIC RAYS IN THE 2006 OUTBURST OF THE RECURRENT NOVA RS OPHIUCHI

V. TATISCHEFF¹ AND M. HERNANZ

THE ASTROPHYSICAL JOURNAL, 663: L101–L104, 2007 July 10

- RS Oph: symbiotic recurrent nova (WD + RG companion)
- Two last nova eruptions: 1985 & 2006 (P_{rec} = 21 yrs)
- P_{orb} =456 days d = 1.6 kpc (2.4 kpc)
- Expanding shock wave sweeps red giant wind

RS Oph (2006 eruption): blast wave evolution

RS Oph observations in X-rays with RXTE/PCA Sokoloski et al. Nature (2006)

Figure 1 | X-ray spectra from the first 3 weeks of the 2006 outburst of RS Oph. These six spectra were taken with the PCA instrument on board the RXTE satellite. The abscissa is the energy, E, of the detected X-rays. The

• Early hard X-ray emission, decaying fast with time

→ T ~ (30-100) keV

\rightarrow T_{shock} (t)

 Shock wave decelerated faster than expected: evidence was found of particle acceleration (p and e), up to TeV energies: see Tatischeff & Hernanz 2007, ApJL

RS Oph (2006 eruption): blast wave evolution

- Shock cooling started at 6 days, when T_s was 10⁸K and radiative cooling was not important??
- V_{shock} (X-rays) * < v (IR)?? (* test particle adiabatic shock hypothesis)

➔ accel of particles in the blast wave and escape of highest E ions from shock region

RS Oph (2006 eruption): evidence of particle acceleration

Non-linear diffusive shock acceleration: model of Berezhko & Ellison (1999)

> accelerated proton spectrum and post shock temperatures as a funtion of η_{inj} - the fraction of shocked protons injected into the acceleration process

Tatischeff & Hernanz, ApJL 2007

First evidence of particle acceleration - p and e⁻ - to TeV energies in a nova [prior to Fermi launch]

Sold agreement with X-ray measurements of T_{shock} for moderate CR accel. efficiency

 $\eta_{inj} \sim 10^{-4}$ - fraction of shocked protons injected into the acceleration process

Energy loss rate due to particle escape

$$2 \times 10^{38} \left(\frac{\varepsilon_{\rm esc}}{0.15}\right) \left(\frac{t}{6 \,\rm days}\right)^{-1.5} \rm erg \, s^{-1.5}$$

~100 times larger than L_{bol} of postshock plasma → energy loss via accelerated particle escape much more efficient than radiative losses to cool the shock

Tatischeff & Hernanz, ApJL 2007

First evidence of particle acceleration - p and e⁻ - to TeV energies in a nova [prior to Fermi launch]

Acceleration of particles (p and e) to TeV energies in a nova - RS Oph (2006) - demonstrated for the first time

- Explains why the observed cooling of the shock started so early (6 days after outburst)
- "Miniature SN remnant"- much dimmer & evolving much faster
 study of time dependence of cosmic ray acceleration in a blast wave is possible
- HE gamma-rays

RS Oph (2006): predicted HE gamma-ray emission

- π^0 production: (p-p coll.; hadronic)
- IC contribution: (e⁻ -photons; leptonic) derived from non thermal synchrotron (radio) and ejecta L_{ej}~L_{Edd}
- $\rightarrow \pi^0$ production dominates

RS Oph would have been detected by Fermi!

RS Oph (2006): predicted HE gamma-ray emission

• π^0 production: (p-p coll.; hadronic) from ϵ_{CR} and (dM/dt)_{RG}

• IC contribution: (e⁻ -photons; leptonic) derived from non thermal synchrotron $L_{syn} \sim 5x10^{33} t_d^{-1.3} erg/s$, (Kantharia et al. 07, radio 1.4 GHz) and ejecta $L_{ej} \sim L_{Edd} = 2x10^{38} erg/s$:

 $L_{IC} = L_{syn} x U_{rad} / (B^2 / 8\pi) \sim L_{syn}$

 $\rightarrow \pi^0$ production dominates

RS Oph would have been detected by Fermi!

SUMMARY

- Discovery of ⁷Li in novae, both directly and as radioactive ⁷Be later decaying to ⁷Li
 - proof of Cameron-Fowler mechanism in novae
 - relevance for the origin of cosmic lithium
 - better prospects for detection of novae in gammarays (MeV range)
- Novae are emitters of HE (E>100 MeV) gamma-rays: acceleration of particles because of the interaction of the ejecta with the surrounding medium
 - external shocks with the red giant wind of the RG companion in symbiotic recurrent novae
 - internal shocks not well understood yet in classical novae