

Journey to the Center of Titan

Evidence of a subsurface ocean

Gwenaël Boué

May 10, 2019

IAP Seminar

Titan and Saturn

Titan interior

- 1. Basic properties
- 2. Thermodynamical argument
- 3. Electromagnetic clue
- 4. Geophysical evidence
- 5. Classical mechanics puzzle
- 6. Concluding remarks

Basic properties

Physical properties : radius

Physical properties : mass

Physical properties : density

Physical properties : density

Volumetric fraction of Ice

$$m{x} = rac{
ho_{ ext{silicate}} - ar{
ho}}{
ho_{ ext{silicate}} -
ho_{ ext{ice}}} \in [0.48, 0.65]$$

Mass fraction of Ice $\eta = \frac{\rho_{\rm ice}}{\overline{ ho}} x \in [0.30, 0.35]$

Rock radius

$$rac{R_{
m rock}}{R} = (1-x)^{1/3} \in [0.71, 0.81]$$

Physical properties : simple model

Physical properties : simple model

Is there an ocean below the surface ?

Thermodynamical argument

Titan's composition

(Lewis 1971)

Solar-proportion mixture (by mass)

$$ar{
ho}=1.8\,{
m g.cm^{-3}}$$

Titan's composition

(Lewis 1971)

Titan's composition

(Lewis 1971)

(Lewis 1971)

(Lewis 1971)

Radiogenic heat production

 $\mathcal{P}\approx 250\,\text{GW}$

Liquid water

(Lewis 1971)

Radiogenic heat production

 $\mathcal{P}\approx 250\,\text{GW}$

Thermal equilibrium

 $\Phi_{\rm th}\approx 250\,GW$

Radiogenic heat production

 $\mathcal{P}\approx 250\,\text{GW}$

Thermal equilibrium $\Phi_{\rm th}\approx 250\,\text{GW}$

Fourier's law

$$\frac{\mathrm{d}T}{\mathrm{d}r} = \frac{\Phi_{\mathrm{th}}}{4\pi R^2 K} = 0.5 \ \mathrm{K} \cdot \mathrm{km}^{-1}$$

(Lewis 1971)

Radiogenic heat production

 $\mathcal{P}\approx 250\,\text{GW}$

Thermal equilibrium $\Phi_{\rm th}\approx 250\,\text{GW}$

Fourier's law

$$\frac{\mathrm{d}T}{\mathrm{d}r} = \frac{\Phi_{\mathrm{th}}}{4\pi R^2 K} = 0.5 \ \mathrm{K} \cdot \mathrm{km}^{-1}$$

Ice shell thickness

 $h = 150 \, \rm km$

(updated values)

Radiogenic heat production

 $\mathcal{P}\approx 450\,\text{GW}$

Thermal equilibrium $\Phi_{\rm th} \approx 450\,\text{GW}$

Fourier's law

$$\frac{\mathrm{d}T}{\mathrm{d}r} = \frac{\Phi_{\mathrm{th}}}{4\pi R^2 K} = 0.85 \ \mathrm{K} \cdot \mathrm{km}^{-1}$$

Ice shell thickness

 $h = 90 \, \mathrm{km}$

Ice convection

∜

no liquid water

(Peale, Cassen & Reynolds 1979)

(Peale, Cassen & Reynolds 1979)

enough to maintain a liquid ocean ?

Electromagnetic clue

Landing date : January 14, 2005

By David Monniaux - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=179229

(Béghin et al. 2010, 2012)

Huygens detection

signal at 36 Hz

(Béghin et al. 2010, 2012)

Huygens detection signal at 36 Hz Fundamental mode ($\lambda = 2\pi R$) $\nu = \frac{c}{2\pi R} \approx 18$ Hz

(Béghin et al. 2010, 2012)

Huygens detection signal at 36 Hz Fundamental mode $(\lambda = 2\pi R)$ $\nu = \frac{c}{2\pi R} \approx 18$ Hz \rightarrow signal = 2nd harmonic

Geophysical evidence

NASA/JPL/ESA/ASI

Launch date October 15, 1997

Orbital insertion July 1, 2004

Last contact September 15, 2017

(less et al. 2012)

=

	Love number	
solution 1	$k_2 = 0.589 \pm 0.150$	less et al. 2012
solution 2	$k_2 = 0.637 \pm 0.224$	less et al. 2012

Love number		
solution 1	$k_2 = 0.589 \pm 0.150$	less et al. 2012
solution 2	$k_2 = 0.637 \pm 0.224$	less et al. 2012
model w/o ocean	$k_2 = 0.024$	

	Love number	
solution 1	$k_2 = 0.589 \pm 0.150$	less et al. 2012
solution 2	$k_2 = 0.637 \pm 0.224$	less et al. 2012
model w/o ocean	$k_2 = 0.024$	
model with ocean	$k_2 = 0.453$	

Classical mechanics puzzle

Additional information about Titan (1/2)

Titan's gravity field (less et al. 2012, SOL1a)

- Rotation $\rightarrow J_2 = (33.599 \pm 0.332) \times 10^{-6}$
- Tidal deformation ightarrow C_{22} = (10.121 \pm 0.029) imes 10⁻⁶

Additional information about Titan (1/2)

Titan's gravity field (less et al. 2012, SOL1a)

- Rotation $\rightarrow J_2 = (33.599 \pm 0.332) \times 10^{-6}$
- Tidal deformation ightarrow C_{22} = (10.121 \pm 0.029) imes 10⁻⁶

Additional information about Titan (1/2)

Titan's gravity field (less et al. 2012, SOL1a)

- Rotation $o J_2 = (33.599 \pm 0.332) \times 10^{-6}$
- Tidal deformation ightarrow C_{22} = (10.121 \pm 0.029) imes 10⁻⁶

Mass distribution

Additional information about Titan (2/2)

Titan's spin orientation (Stiles et al., 2008, 2010)

Tilt amplitude → 0.32° obliquity
Tilt direction → Cassini state

Regular satellites

Orbit poles

Orbit poles

 ${\sf Orbit \ poles} + {\sf Titan \ spin}$

Titan's orbital precession (703 years)

Cassini state alignment + perturbations

Synchronous rotation

Synchronous rotation

Synchronous rotation

Rotating frame

Rigid case

Rigid case

Orbital excitation precession period		(Vienne & Duriez, 1995)
	703.5 years	

Rigid case

Orbital excitation precession period	(Vienne & Duriez, 1995)
703.5 years	
Forced obliguity	(Bills & Nimmo, 2011)

0.113 deg

(Bills & Nimmo, 2011)

Back to the pole position

Back to the pole position

Hint of a global sub-surface ocean

Frequency of libration in latitude = function of

- Mean moment of inertia $I/(mR^2)$
- Gravity field coefficients J_2 , C_{22}

Hint of a global sub-surface ocean

Frequency of libration in latitude = function of

- Mean moment of inertia $I/(mR^2)$
- Gravity field coefficients J₂, C₂₂

Bills & Nimmo (2011) obliquity = 0.32° \Leftrightarrow $I = 0.45 mR^2$

Hint of a global sub-surface ocean

Frequency of libration in latitude = function of

- Mean moment of inertia $I/(mR^2)$
- Gravity field coefficients J_2 , C_{22}

Bills & Nimmo (2011)
obliquity =
$$0.32^{\circ}$$
 \Leftrightarrow $I = 0.45 mR^2$

Example of body with $I = 0.45 mR^2$

Bills & Nimmo (2011)

[...] strongly suggest that Titan does not precess as a rigid body, but has a surface shell which is partially decoupled (e.g. by an ocean) from the deeper interior. However, the precessional dynamics of a thin shell, overlaying a global subsurface ocean, are not yet fully understood (Noir et al., 2009).

Bills & Nimmo (2011)

[...] strongly suggest that Titan does not precess as a rigid body, but has a surface shell which is partially decoupled (e.g. by an ocean) from the deeper interior. However, the precessional dynamics of a thin shell, overlaying a global subsurface ocean, are not yet fully understood (Noir et al., 2009).

Three layer models

• Baland et al. (2011, 2014) • Noyelles & Nimmo (2014)
- Baland et al. (2011)
- Noyelles & Nimmo (2014)

- Baland et al. (2011)
- Noyelles & Nimmo (2014)

- Baland et al. (2011)
- Noyelles & Nimmo (2014)

Dynamical model

Dynamical model

Dynamical model

Libration in longitude

Using the "Light-ocean" interior model of Fortes (2012)

Using the "Light-ocean" interior model of Fortes (2012)

Libration in latitude

Using the "Light-ocean" interior model of Fortes (2012)

 Table 1: Obliquity of Titan's layers in degree.

	rigid	static ocean	rotating ocean	
interior	0.113			
ocean	0.113			
shell	0.113			

 Table 1: Obliquity of Titan's layers in degree.

	rigid	static ocean		rotating ocean	
		F1	F2		
interior	0.113	0.149	0.207		
ocean	0.113				
shell	0.113	0.062	0.064		

F1 Light-ocean model of (Fortes, 2012)

F2 Dense-ocean model of (Fortes, 2012)

 Table 1: Obliquity of Titan's layers in degree.

	rigid	static ocean		rotating ocean	
		F 1	F2	F1	F2
interior	0.113	0.149	0.207	0.294	0.272
ocean	0.113			-0.477	0.207
shell	0.113	0.062	0.064	0.004	0.108

F1 Light-ocean model of (Fortes, 2012)

F2 Dense-ocean model of (Fortes, 2012)

Concluding remarks

Summary

The presence of the ocean is

inferred from

• temperature profile (Lewis 1971)

detected through

- intensity of the atmospheric electric field (Béghin et al. 2010)
- amount of tidal deformation (less 2012)
- orientation of the spin axis (Boué et al. 2017)

Summary

The presence of the ocean is

inferred from

• temperature profile (Lewis 1971)

detected through

- intensity of the atmospheric electric field (Béghin et al. 2010)
- amount of tidal deformation (less 2012)
- orientation of the spin axis (Boué et al. 2017)

potentially detectable through

• libration in longitude (Richard et al. 2014)

Moon's rotation characteristics

- 1. the rotation rate is synchronous with the orbital mean motion
- 2. the inclination of the lunar equator plane to the ecliptic is constant
- 3. the spin axis and the normals to the ecliptic and orbit plane remain coplanar

Figure 1: Trajectory of the spin-axis in a frame rotating at the orbital precession rate.

Figure 1: Trajectory of the spin-axis in a frame rotating at the orbital precession rate.

Figure 2: Equilibrium obliquity.

Figure 1: Trajectory of the spin-axis in a frame rotating at the orbital precession rate.

Figure 2: Equilibrium obliquity.

Figure 1: Trajectory of the spin-axis in a frame rotating at the orbital precession rate.

Figure 1: Numbering of the 4 Cassini states.

Figure 2: Equilibrium obliquity.

Axial asymmetry and spin-orbit resonances

(Peale 1969)

4 Cassini states

(Boué in prep.)

(Boué in prep.)

Up to 16 Cassini states !

(Boué in prep.)

(Boué in prep.)

mantle obliquity (deg)

(Boué in prep.)

mantle obliquity (deg)

(Boué in prep.)

Exoplanet orientation ?

Exoplanet orientation ?

